skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena

Journal Article · · SIMULATION: Transactions of The Society for Modeling and Simulation International
OSTI ID:1037625

In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallel execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences (NCCS)
Sponsoring Organization:
USDOE Office of Science (SC); USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1037625
Journal Information:
SIMULATION: Transactions of The Society for Modeling and Simulation International, Vol. 88, Issue 7; ISSN 0037-5497
Country of Publication:
United States
Language:
English