skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering Monolignol 4-O-Methyltransferases to Modulate Lignin Biosynthesis

Journal Article · · Journal of Biological Chemistry

Lignin is a complex polymer derived from the oxidative coupling of three classical monolignols. Lignin precursors are methylated exclusively at the meta-positions (i.e. 3/5-OH) of their phenyl rings by native O-methyltransferases, and are precluded from substitution of the para-hydroxyl (4-OH) position. Ostensibly, the para-hydroxyls of phenolics are critically important for oxidative coupling of phenoxy radicals to form polymers. Therefore, creating a 4-O-methyltransferase to substitute the para-hydroxyl of monolignols might well interfere with the synthesis of lignin. The phylogeny of plant phenolic O-methyltransferases points to the existence of a batch of evolutionarily 'plastic' amino acid residues. Following one amino acid at a time path of directed evolution, and using the strategy of structure-based iterative site-saturation mutagenesis, we created a novel monolignol 4-O-methyltransferase from the enzyme responsible for methylating phenylpropenes. We show that two plastic residues in the active site of the parental enzyme are vital in dominating substrate discrimination. Mutations at either one of these separate the evolutionarily tightly linked properties of substrate specificity and regioselective methylation of native O-methyltransferase, thereby conferring the ability for para-methylation of the lignin monomeric precursors, primarily monolignols. Beneficial mutations at both sites have an additive effect. By further optimizing enzyme activity, we generated a triple mutant variant that may structurally constitute a novel phenolic substrate binding pocket, leading to its high binding affinity and catalytic efficiency on monolignols. The 4-O-methoxylation of monolignol efficiently impairs oxidative radical coupling in vitro, highlighting the potential for applying this novel enzyme in managing lignin polymerization in planta.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
DOE - OFFICE OF SCIENCE
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1019441
Report Number(s):
BNL-90651-2010-JA; JBCHA3; R&D Project: BO-147; KC0304000; TRN: US201115%%116
Journal Information:
Journal of Biological Chemistry, Vol. 285, Issue 1; ISSN 0021-9258
Country of Publication:
United States
Language:
English