skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The third integral effects test (IET-3) in the Surtsey Test Facility

Technical Report ·
OSTI ID:10144266
; ; ;  [1];  [2]
  1. Sandia National Labs., Albuquerque, NM (United States)
  2. Ktech Corp., Albuquerque, NM (United States)

The third experiment of the Integral Effects Test (IET-3) series was conducted to investigate the effects of high pressure melt ejection (HPME) on direct containment heating (DCH). A 1:10 linear scale model of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories (SNL). The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a semi-hemispherical bottom head containing a graphite limitor plate with a 3.5 cm exit hole to simulate the ablated hole in the RPV bottom head that would be formed by tube ejection in a severe nuclear power plant (NPP) accident. The reactor cavity model contained 3.48 kg of water with a depth of 0.9 cm that correspond to condensate levels in the Zion plant. A steam driven iron oxide/aluminum/chromium thermite was used to simulate HPME. IET-3 replicated the first experiment in the IET series (IET-1) except the Surtsey vessel contained 0.09 MPa air and 0.1 MPa nitrogen. No steam explosions occurred in the cavity in IET-3 experiment. The cavity pressure measurements showed that rapid vaporization of water occurred in the cavity at about the same time as the steam explosion in IET-1. However, the oxygen in the Surtsey vessel in IET-3 resulted in a vigorous hydrogen burn, which caused a significant increase in the peak pressure, 246 kPa compared to 98 kPa in the IET-1 test. The total debris mass ejected into the Surtsey vessel in IET-3 was 34.3 kg, and gas grab sample analysis indicated that 223 moles of hydrogen were produced by steam/metal reactions. About 186 moles of hydrogen burned and 37 moles remained unreacted.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
10144266
Report Number(s):
SAND-92-0166; ON: DE92014062
Resource Relation:
Other Information: PBD: Mar 1992
Country of Publication:
United States
Language:
English