skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure H2 - O2 - Ar mixtures: a summary of results obtained with the adaptive mesh refinement framework AMROC

Journal Article · · Journal of Combustion
DOI:https://doi.org/10.1155/2011/738969· OSTI ID:1014245

Numerical simulation can be key to the understanding of the multi-dimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the non-equilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniques in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, i.e. under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis and a diagram of the transition boundaries between possible Mach reflection structures is constructed.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1014245
Journal Information:
Journal of Combustion, Vol. 2011, Issue 2011
Country of Publication:
United States
Language:
English