skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coal-fired high performance power generating system. Quarterly progress report, April 1, 1994--June 30, 1994

Technical Report ·
OSTI ID:10117643

The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=} 65% of heat input; (4) all solid wastes benign. In order to achieve these goals, this team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis the authors have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The efforts in Task 3.1.1 have focused on an evaluation of the various in-furnace NO{sub x} control strategies including SNCR. Experimental work on gas stabilization, air staging, reburning and optimized SNCR are presented here. By judicious combinations of all these approaches, the model predicts that the NO, goal of 0.06 lbs NO{sub a}/MBTU fuel can be met. This combination of experimental and analytical approaches provides the best perspective for a cost effective evaluation of all the NO{sub x} control strategies, including SCR. Under Task 3.1.2, work has been progressing on the design of the slag screen. The design analysis has been improved to account for tube placement and tube roughness. This latter parameter has been varied to include effects of deposit formation. Pressure drop, heat loss and screen efficiency can now be optimized. The changes in the designs of both the radiant and convective air heaters has resulted in a new appraisal of potential material requirements. This work being carried out under Task 3.1.3 has focused on high-strength cast superalloys for strength and an array of alloy and ceramic materials for corrosion-resistant coatings. An outline of the work to be performed under Task 3.1.7 Combustor Controls completes this report.

Research Organization:
United Technologies Corp., East Hartford, CT (United States). Research Center
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC22-92PC91155
OSTI ID:
10117643
Report Number(s):
DOE/PC/91155-T8; ON: DE95006663; TRN: 95:001788
Resource Relation:
Other Information: PBD: [1995]
Country of Publication:
United States
Language:
English