skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of nanocrystalline silicide compounds

Thesis/Dissertation ·
OSTI ID:10110860

This thesis involves the investigation into the production of nanocrystalline silicide compounds by radio frequency inductively coupled plasma (RF-ICP) and mechanical milling. A system constructed which utilized a RF-ICP, a powder feed system and a condensation / collection chamber to produce nanocrystalline materials. Several silicides, such as Ti{sub 5}Si{sub 3}, Cr{sub 3}Si and MoSi{sub 2}, were fed into the plasma were they vaporized. The vaporized material then passed into a connecting chamber, where it condensed out of the vapor phase and the resulting powder was collected. Much of the work conducted was in designing and building of the systems components. This was followed by establishing the plasmas operating parameters. The material collected from the ICP chamber was then compared to material produced by mechanical milling. The material produced by both methods were characterized by x-ray diffraction, scanning and transmission-electron microscopy, and energy dispersive spectroscopy. The results indicate that it is possible to produce nanocrystalline material by mechanical milling; however, there is a significant amount of contamination from the milling ball and milling container. The results also show that the Ti{sub 5}Si{sub 3} and Cr{sub 3}Si compounds can be produced in nanocrystalline form by the ICP method. The resultant material collected from the ICP chamber following the MoSi{sub 2} run consisted of nanocrystalline Si and crystalline, Mo rich Si compound. Inductively coupled plasma - atomic emission spectroscopy (ICP-AES) was also used to observe the powders as they passed through the plasma. The resulting data indicates that each compound was vaporized and dissociated in the plasma. The following thesis describes the apparatus and experimental procedure used in producing nanocrystals.

Research Organization:
Ames Lab., IA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-82
OSTI ID:
10110860
Report Number(s):
IS-T-1588; ON: DE92005364
Resource Relation:
Other Information: TH: Thesis (M.S.); PBD: 3 Jan 1992
Country of Publication:
United States
Language:
English