skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of Hafnia Powder Prepared from an Oxychloride Sol Gel

Journal Article · · Journal of the American Ceramic Society

Hafnium containing compounds are of great importance to the semiconductor industry as a replacement for Si(O,N) with a high- gate dielectric. Whilst Hf is already being incorporated into working devices1, much is still to be understood about it. Here we investigate the crystallisation processes and chemistry of bulk HfO2 powders which will aid in interpretation of reactions and crystallisation events occurring in thin films used as gate dielectrics. Amorphous HfO2 powder was prepared via a sol-gel route using hafnium oxychloride (HfOCl2 xH2O) as a precursor. The powders were subjected to various heat treatments and analysed using x-ray diffraction (XRD) and thermal analysis techniques. It was found that a large change in the crystallisation pathway occurred when the sample was heated in an inert environment compared with in air. Instead of the expected monoclinic phase (m-HfO2), tetragonal HfO2 (t-HfO2) also formed under these conditions and was observed up to temperatures of ~760 C. The t-HfO2 particles, which are less than 30nm in size, eventually transform into m-HfO2 on further heating. Possible mechanisms for the crystallisation of t-HfO2 are discussed. It is proposed that within this temperature range t-HfO2 is stabilised due to the presence of oxygen vacancies in the inert environment, forming by the reduction of HfIV to HfIII. As the crystal grows in size as the temperature increases there are too few oxygen vacancies left in the structure to continue stabilising the t-HfO2 phase and so transformation to m-HfO2 occurs.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1009910
Journal Information:
Journal of the American Ceramic Society, Vol. 94, Issue 3; ISSN 0002-7820
Country of Publication:
United States
Language:
English