skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Structure of Fcp1, an Essential RNA Polymerase II CTD Phosphatase

Journal Article · · Mol. Cell

Kinases and phosphatases regulate mRNA synthesis and processing by phosphorylating and dephosphorylating the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. Fcp1 is an essential CTD phosphatase that preferentially hydrolyzes Ser2-PO{sub 4} of the tandem YSPTSPS CTD heptad array. Fcp1 crystal structures were captured at two stages of the reaction pathway: a Mg-BeF{sub 3} complex that mimics the aspartylphosphate intermediate and a Mg-AlF{sub 4}{sup -} complex that mimics the transition state of the hydrolysis step. Fcp1 is a Y-shaped protein composed of an acylphosphatase domain located at the base of a deep canyon formed by flanking modules that are missing from the small CTD phosphatase (SCP) clade: an Fcp1-specific helical domain and a C-terminal BRCA1 C-terminal (BRCT) domain. The structure and mutational analysis reveals that Fcp1 and Scp1 (a Ser5-selective phosphatase) adopt different CTD-binding modes; we surmise the CTD threads through the Fcp1 canyon to access the active site.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1007068
Journal Information:
Mol. Cell, Vol. 32, Issue (4) ; 11, 2008; ISSN 1097-2765
Country of Publication:
United States
Language:
ENGLISH