skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic scale modelling.

Journal Article · · Journal of Nuclear Materials

The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, {approx}100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1003344
Journal Information:
Journal of Nuclear Materials, Vol. 329-333, Issue 2; ISSN 0022-3115
Country of Publication:
United States
Language:
English