skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of Fragment-Based NMR Screening, X-ray Crystallography, Structure-Based Design, and Focused Chemical Library Design to Identify Novel [mu]M Leads for the Development of nM BACE-1 ([beta]-Site APP Cleaving Enzyme 1) Inhibitors

Journal Article · · J. Med. Chem.
DOI:https://doi.org/10.1021/jm901472u· OSTI ID:1002631

Fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design were used to identify novel inhibitors for BACE-1. A rapid optimization of an initial NMR hit was achieved by a combination of NMR and a functional assay, resulting in the identification of an isothiourea hit with a K{sub d} of 15 {micro}M for BACE-1. NMR data and the crystal structure revealed that this hit makes H-bond interactions with the two catalytic aspartates, occupies the nonprime side region of the active site of BACE-1, and extends toward the S3 subpocket (S3sp). A focused NMR-based search for heterocyclic isothiourea isosteres resulted in several distinct classes of BACE-1 active site directed compounds with improved chemical stability and physicochemical properties. The strategy for optimization of the 2-aminopyridine lead series to potent inhibitors of BACE-1 was demonstrated. The structure-based design of a cyclic acylguanidine lead series and its optimization into nanomolar BACE-1 inhibitors are the subject of the companion paper (J. Med. Chem. 2010, 53, DOI:10.1021/jm901408p).

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1002631
Journal Information:
J. Med. Chem., Vol. 53, Issue (3) ; 02, 2010; ISSN 0022-2623
Country of Publication:
United States
Language:
ENGLISH