skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strongly Nonlinear Optical Glass Fibers from Noncentrosymmetric Phase-Change Chalcogenide Materials

Journal Article · · J. Am. Chem. Soc.
DOI:https://doi.org/10.1021/ja908839s· OSTI ID:1002606

We report that the one-dimensional polar selenophosphate compounds APSe{sub 6} (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients {chi}{sup (2)} of 151.3 and 149.4 pm V{sup -1} for K{sup +} and Rb{sup +} salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe{sub 6} exhibits comparable SHG intensities to the top infrared NLO material AgGaSe{sub 2} without any poling treatments. APSe{sub 6} exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe{sub 6} (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe{sub 6} bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1002606
Journal Information:
J. Am. Chem. Soc., Vol. 132, Issue (1) ; 01, 2010; ISSN 0002-7863
Country of Publication:
United States
Language:
ENGLISH