DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning

Abstract

RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.

Authors:
;  [1];  [1];  [2];  [2];  [2];  [3];  [3];  [3];  [3];  [4];  [5];  [5];  [5];  [6];  [6];  [6];  [7];  [7];  [8] more »;  [9];  [9];  [10];  [10];  [11];  [12];  [9];  [1] « less
  1. Columbia Univ., New York, NY (United States)
  2. Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  3. McMaster Univ., Hamilton, ON (Canada)
  4. McMaster Univ., Hamilton, ON (Canada); Canadian Inst. for Advanced Research, Toronto (Canada)
  5. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Physics
  6. Zhejiang Univ., Hangzhou (China)
  7. Japan Atomic Energy Agency (JAEA), Tokai (Japan). Advanced Science Research Center
  8. Brookhaven National Lab. (BNL), Upton, NY (United States)
  9. Univ. of Tokyo (Japan)
  10. Kyoto Univ. (Japan)
  11. Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ciencia de Materiales de Madrid, Cantoblanco
  12. Brookhaven National Lab. (BNL), Upton, NY (United States); Rutgers Univ., Piscataway, NJ (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1303008
Report Number(s):
BNL-112476-2016-JA
Journal ID: ISSN 2041-1723; R&D Project: PO011; KC0201060
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

B. A. Frandsen, Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., Munsie, T. J.S., Hallas, A. M., Wilson, M. N., Cai, Y., Luke, G. M., Chen, B., Li, W., Jin, C., Ding, C, Guo, S., Ning, F., Ito, T. U., Higemoto, W., Billinge, S. J.L., Sakamoto, S., Fujimori, A., Murakami, T., Kageyama, H., Alonso, J. A., Kotliar, G., Imada, M., and Uemura, Y. J. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. United States: N. p., 2016. Web. doi:10.1038/ncomms12519.
B. A. Frandsen, Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., Munsie, T. J.S., Hallas, A. M., Wilson, M. N., Cai, Y., Luke, G. M., Chen, B., Li, W., Jin, C., Ding, C, Guo, S., Ning, F., Ito, T. U., Higemoto, W., Billinge, S. J.L., Sakamoto, S., Fujimori, A., Murakami, T., Kageyama, H., Alonso, J. A., Kotliar, G., Imada, M., & Uemura, Y. J. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. United States. https://doi.org/10.1038/ncomms12519
B. A. Frandsen, Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., Munsie, T. J.S., Hallas, A. M., Wilson, M. N., Cai, Y., Luke, G. M., Chen, B., Li, W., Jin, C., Ding, C, Guo, S., Ning, F., Ito, T. U., Higemoto, W., Billinge, S. J.L., Sakamoto, S., Fujimori, A., Murakami, T., Kageyama, H., Alonso, J. A., Kotliar, G., Imada, M., and Uemura, Y. J. Wed . "Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning". United States. https://doi.org/10.1038/ncomms12519. https://www.osti.gov/servlets/purl/1303008.
@article{osti_1303008,
title = {Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning},
author = {B. A. Frandsen and Liu, L. and Cheung, S. C. and Guguchia, Z. and Khasanov, R. and Morenzoni, E. and Munsie, T. J.S. and Hallas, A. M. and Wilson, M. N. and Cai, Y. and Luke, G. M. and Chen, B. and Li, W. and Jin, C. and Ding, C and Guo, S. and Ning, F. and Ito, T. U. and Higemoto, W. and Billinge, S. J.L. and Sakamoto, S. and Fujimori, A. and Murakami, T. and Kageyama, H. and Alonso, J. A. and Kotliar, G. and Imada, M. and Uemura, Y. J.},
abstractNote = {RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.},
doi = {10.1038/ncomms12519},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {Wed Aug 17 00:00:00 EDT 2016},
month = {Wed Aug 17 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetic phase transition in V 2 O 3 nanocrystals
journal, September 2010


Charge Disproportionation without Charge Transfer in the Rare-Earth-Element Nickelates as a Possible Mechanism for the Metal-Insulator Transition
journal, March 2014


Magnetic and transport studies of pure V 2 O 3 under pressure
journal, March 1994


Resonant x-ray scattering experiments on electronic orderings in NdNiO 3 single crystals
journal, January 2005


Positive muon spin precession in magnetic oxides MnO and V2O3; local fields and phase transition
journal, January 1984

  • Uemura, Y. J.; Yamazaki, T.; Kitaoka, Y.
  • Hyperfine Interactions, Vol. 17, Issue 1-4
  • DOI: 10.1007/BF02065922

Quantum criticality around metal-insulator transitions of strongly correlated electron systems
journal, March 2007


Mott Transition in Cr-Doped V 2 O 3
journal, December 1969


Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1−xCax)RuO3
journal, December 2006

  • Uemura, Y. J.; Goko, T.; Gat-Malureanu, I. M.
  • Nature Physics, Vol. 3, Issue 1
  • DOI: 10.1038/nphys488

Anomalous Magnetic Properties of Metallic V 2 O 3 under Pressure
journal, January 1996


Site-Selective Mott Transition in Rare-Earth-Element Nickelates
journal, October 2012


Gaps and pseudogaps in perovskite rare earth nickelates
journal, June 2015

  • Allen, S. James; Hauser, Adam J.; Mikheev, Evgeny
  • APL Materials, Vol. 3, Issue 6
  • DOI: 10.1063/1.4907771

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

From quantum matter to high-temperature superconductivity in copper oxides
journal, February 2015

  • Keimer, B.; Kivelson, S. A.; Norman, M. R.
  • Nature, Vol. 518, Issue 7538
  • DOI: 10.1038/nature14165

Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO 3
journal, April 2009


Electronic structure of PrNiO 3 studied by photoemission and x-ray-absorption spectroscopy: Band gap and orbital ordering
journal, November 1995


Electronic structure of paramagnetic V 2 O 3 : Strongly correlated metallic and Mott insulating phase
journal, November 2004


Sudden Appearance of an Unusual Spin Density Wave At the Metal-Insulator Transition in the Perovskites RNiO 3 (R = Pr, Nd)
journal, October 1992

  • García-Muñoz, J. L.; Rodríguez-Carvajal, J.; Lacorre, P.
  • Europhysics Letters (EPL), Vol. 20, Issue 3
  • DOI: 10.1209/0295-5075/20/3/009

Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


Mott-Hubbard transition in V 2 O 3 revisited
journal, March 2013

  • Hansmann, P.; Toschi, A.; Sangiovanni, G.
  • physica status solidi (b), Vol. 250, Issue 7
  • DOI: 10.1002/pssb.201248476

Metal-Insulator Transitions in Pure and Doped V 2 O 3
journal, March 1973


Electronic-structure evolution through the metal-insulator transition in R NiO 3
journal, September 1999


Musrfit: A Free Platform-Independent Framework for μSR Data Analysis
journal, January 2012


PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Commonalities in phase and mode
journal, April 2009


Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap
journal, April 1992


Electronic structure and metal-insulator transition in LaNiO 3 δ
journal, March 2002


Total energy calculations using DFT+DMFT: Computing the pressure phase diagram of the rare earth nickelates
journal, June 2014


Charge Disproportionation in R NiO 3 Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO 3
journal, May 1999

  • Alonso, J. A.; García-Muñoz, J. L.; Fernández-Díaz, M. T.
  • Physical Review Letters, Vol. 82, Issue 19
  • DOI: 10.1103/PhysRevLett.82.3871

Phase separation in the t - J model
journal, January 1990


Frustrated electronic phase separation and high-temperature superconductors
journal, May 1993


Quantum Phase Transition in the Itinerant Antiferromagnet ( V 0.9 Ti 0.1 ) 2 O 3
journal, August 2008


Covalency-driven unusual metal-insulator transition in nickelates
journal, March 1994


A microscopic view on the Mott transition in chromium-doped V2O3
journal, November 2010

  • Lupi, S.; Baldassarre, L.; Mansart, B.
  • Nature Communications, Vol. 1, Issue 1
  • DOI: 10.1038/ncomms1109

Optical Conductivity in Mott-Hubbard Systems
journal, July 1995


A profile refinement method for nuclear and magnetic structures
journal, June 1969


Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor
journal, August 2011

  • Deng, Z.; Jin, C. Q.; Liu, Q. Q.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1425

Dynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition
journal, September 1999


Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition
journal, January 2011


Quantum phase transitions
journal, November 2003


Enhanced thermoelectric power and electronic correlations in RuSe 2
journal, April 2015

  • Wang, Kefeng; Wang, Aifeng; Tomic, A.
  • APL Materials, Vol. 3, Issue 4
  • DOI: 10.1063/1.4913919

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Metal-insulator transitions
journal, June 1991


Musrfit: a free platform-independent framework for μSR data analysis
text, January 2012


Enhanced Thermoelectric Power and Electronic Correlations in RuSe$_2$
text, January 2016


Phase Inhomogeneity of the Itinerant Ferromagnet MnSi at High Pressures
text, January 2003


Optical Conductivity in Mott-Hubbard Systems
text, January 1995


Musrfit: A Free Platform-Independent Framework for μSR Data Analysis
journal, January 2012


From quantum matter to high-temperature superconductivity in copper oxides
journal, February 2015

  • Keimer, B.; Kivelson, S. A.; Norman, M. R.
  • Nature, Vol. 518, Issue 7538
  • DOI: 10.1038/nature14165

A microscopic view on the Mott transition in chromium-doped V2O3
journal, November 2010

  • Lupi, S.; Baldassarre, L.; Mansart, B.
  • Nature Communications, Vol. 1, Issue 1
  • DOI: 10.1038/ncomms1109

Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor
journal, August 2011

  • Deng, Z.; Jin, C. Q.; Liu, Q. Q.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1425

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Phase Inhomogeneity of the Itinerant Ferromagnet MnSi at High Pressures
journal, February 2004


Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films
journal, July 2015


The electronic phase diagram of the LaO1-xFxFeAs superconductor
text, January 2008


Works referencing / citing this record:

Restoration of quantum critical behavior by disorder in pressure-tuned (Mn,Fe)Si
journal, August 2017


Restoration of quantum critical behavior by disorder in pressure-tuned (Mn,Fe)Si
text, January 2017