DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elimination of formate production in Clostridium thermocellum

Abstract

We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.

Authors:
 [1];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); ; Dartmouth College, Hanover, NH (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1286847
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Industrial Microbiology and Biotechnology
Additional Journal Information:
Journal Volume: 42; Journal Issue: 9; Journal ID: ISSN 1367-5435
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; Cellulosic ethanol; Clostridium thermocellum; Pyruvate:formate lyase; Metabolic engineering; C1 metabolism

Citation Formats

Rydzak, Thomas, Lynd, Lee R., and Guss, Adam M. Elimination of formate production in Clostridium thermocellum. United States: N. p., 2015. Web. doi:10.1007/s10295-015-1644-3.
Rydzak, Thomas, Lynd, Lee R., & Guss, Adam M. Elimination of formate production in Clostridium thermocellum. United States. https://doi.org/10.1007/s10295-015-1644-3
Rydzak, Thomas, Lynd, Lee R., and Guss, Adam M. Sat . "Elimination of formate production in Clostridium thermocellum". United States. https://doi.org/10.1007/s10295-015-1644-3. https://www.osti.gov/servlets/purl/1286847.
@article{osti_1286847,
title = {Elimination of formate production in Clostridium thermocellum},
author = {Rydzak, Thomas and Lynd, Lee R. and Guss, Adam M.},
abstractNote = {We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.},
doi = {10.1007/s10295-015-1644-3},
journal = {Journal of Industrial Microbiology and Biotechnology},
number = 9,
volume = 42,
place = {United States},
year = {Sat Jul 11 00:00:00 EDT 2015},
month = {Sat Jul 11 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transformation of Clostridium Thermocellum by Electroporation
book, January 2012


Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress
journal, January 2012


Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
journal, May 2013

  • van der Veen, Douwe; Lo, Jonathan; Brown, Steven D.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 40, Issue 7
  • DOI: 10.1007/s10295-013-1275-5

Consolidated bioprocessing of cellulosic biomass: an update
journal, October 2005

  • Lynd, Lee R.; van Zyl, Willem H.; McBride, John E.
  • Current Opinion in Biotechnology, Vol. 16, Issue 5, p. 577-583
  • DOI: 10.1016/j.copbio.2005.08.009

New yeast recombineering tools for bacteria
journal, September 2009


Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405
journal, November 2008

  • Islam, Rumana; Cicek, Nazim; Sparling, Richard
  • Applied Microbiology and Biotechnology, Vol. 82, Issue 1
  • DOI: 10.1007/s00253-008-1763-0

How biotech can transform biofuels
journal, February 2008

  • Lynd, Lee R.; Laser, Mark S.; Bransby, David
  • Nature Biotechnology, Vol. 26, Issue 2, p. 169-172
  • DOI: 10.1038/nbt0208-169

Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
journal, January 2013


Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media
journal, February 2013


High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes
journal, September 2011

  • Argyros, D. Aaron; Tripathi, Shital A.; Barrett, Trisha F.
  • Applied and Environmental Microbiology, Vol. 77, Issue 23, p. 8288-8294
  • DOI: 10.1128/AEM.00646-11

Atypical Glycolysis in Clostridium thermocellum
journal, February 2013

  • Zhou, Jilai; Olson, Daniel G.; Argyros, D. Aaron
  • Applied and Environmental Microbiology, Vol. 79, Issue 9, p. 3000-3008
  • DOI: 10.1128/AEM.04037-12

Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant
journal, August 2010

  • Tripathi, S. A.; Olson, D. G.; Argyros, D. A.
  • Applied and Environmental Microbiology, Vol. 76, Issue 19, p. 6591-6599
  • DOI: 10.1128/AEM.01484-10

Increase in Ethanol Yield via Elimination of Lactate Production in an Ethanol-Tolerant Mutant of Clostridium thermocellum
journal, February 2014


Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum
journal, May 2014

  • Rydzak, Thomas; Grigoryan, Marina; Cunningham, Zack J.
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 14
  • DOI: 10.1007/s00253-014-5798-0

End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405
journal, August 2011

  • Rydzak, Thomas; Levin, David B.; Cicek, Nazim
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 1
  • DOI: 10.1007/s00253-011-3511-0

Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

Alanine Aminotransferase Homologs Catalyze the Glutamate:Glyoxylate Aminotransferase Reaction in Peroxisomes of Arabidopsis
journal, January 2003

  • Liepman, Aaron H.; Olsen, Laura J.
  • Plant Physiology, Vol. 131, Issue 1
  • DOI: 10.1104/pp.011460

Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405)
journal, January 2012


Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405
journal, March 2009


Determination of the Carbon-Bound Electron Composition of Microbial Cells and Metabolites by Dichromate Oxidation
journal, January 1979


Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
journal, January 2015

  • Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0204-4

Purification and characterization of acetate kinase from Clostridium thermocellum
journal, December 1998


Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
journal, January 2013

  • Wilson, Charlotte M.; Yang, Shihui; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-131

Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization
journal, October 2004

  • Özkan, Melek; Yllmaz, Ebru I.; Lynd, Lee R.
  • Canadian Journal of Microbiology, Vol. 50, Issue 10
  • DOI: 10.1139/w04-071

Formate synthesis by Clostridium thermocellum during anaerobic fermentation
journal, July 2006

  • Sparling, Richard; Islam, Rumana; Cicek, Nazim
  • Canadian Journal of Microbiology, Vol. 52, Issue 7
  • DOI: 10.1139/w06-021

The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
journal, October 2014

  • Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/s13068-014-0155-1

Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth fromClostridium thermocellum
journal, January 1987

  • Lynd, L. R.; Grethlein, H. E.
  • Biotechnology and Bioengineering, Vol. 29, Issue 1
  • DOI: 10.1002/bit.260290114

Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation
journal, January 2011

  • Raman, Babu; McKeown, Catherine K; Rodriguez, Miguel
  • BMC Microbiology, Vol. 11, Issue 1, Article No. 134
  • DOI: 10.1186/1471-2180-11-134

A defined growth medium with very low background carbon for culturing Clostridium thermocellum
journal, February 2012

  • Holwerda, Evert K.; Hirst, Kyle D.; Lynd, Lee R.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 39, Issue 6
  • DOI: 10.1007/s10295-012-1091-3

Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
journal, January 2012

  • Guss, Adam M.; Olson, Daniel G.; Caiazza, Nicky C.
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-30

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
journal, August 2011

  • Shao, Xiongjun; Raman, Babu; Zhu, Mingjun
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 3
  • DOI: 10.1007/s00253-011-3492-z

Electrotransformation of Clostridium thermocellum
journal, February 2004


Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
journal, August 2011

  • Brown, S. D.; Guss, A. M.; Karpinets, T. V.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1102444108

Reassessment of the Transhydrogenase/Malate Shunt Pathway in Clostridium thermocellum ATCC 27405 through Kinetic Characterization of Malic Enzyme and Malate Dehydrogenase
journal, January 2015

  • Taillefer, M.; Rydzak, T.; Levin, D. B.
  • Applied and Environmental Microbiology, Vol. 81, Issue 7
  • DOI: 10.1128/AEM.03360-14

Microbial Physiology
book, January 2008


Microbial physiology
journal, November 1988


Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth fromClostridium thermocellum
journal, January 1987

  • Lynd, L. R.; Grethlein, H. E.
  • Biotechnology and Bioengineering, Vol. 29, Issue 1
  • DOI: 10.1002/bit.260290114

Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405
journal, November 2008

  • Islam, Rumana; Cicek, Nazim; Sparling, Richard
  • Applied Microbiology and Biotechnology, Vol. 82, Issue 1
  • DOI: 10.1007/s00253-008-1763-0

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
journal, August 2011

  • Shao, Xiongjun; Raman, Babu; Zhu, Mingjun
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 3
  • DOI: 10.1007/s00253-011-3492-z

End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405
journal, August 2011

  • Rydzak, Thomas; Levin, David B.; Cicek, Nazim
  • Applied Microbiology and Biotechnology, Vol. 92, Issue 1
  • DOI: 10.1007/s00253-011-3511-0

Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum
journal, May 2014

  • Rydzak, Thomas; Grigoryan, Marina; Cunningham, Zack J.
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 14
  • DOI: 10.1007/s00253-014-5798-0

A defined growth medium with very low background carbon for culturing Clostridium thermocellum
journal, February 2012

  • Holwerda, Evert K.; Hirst, Kyle D.; Lynd, Lee R.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 39, Issue 6
  • DOI: 10.1007/s10295-012-1091-3

Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media
journal, February 2013


Consolidated bioprocessing of cellulosic biomass: an update
journal, October 2005

  • Lynd, Lee R.; van Zyl, Willem H.; McBride, John E.
  • Current Opinion in Biotechnology, Vol. 16, Issue 5, p. 577-583
  • DOI: 10.1016/j.copbio.2005.08.009

Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405
journal, March 2009


New yeast recombineering tools for bacteria
journal, September 2009


Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
journal, January 2013


How biotech can transform biofuels
journal, February 2008

  • Lynd, Lee R.; Laser, Mark S.; Bransby, David
  • Nature Biotechnology, Vol. 26, Issue 2, p. 169-172
  • DOI: 10.1038/nbt0208-169

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
journal, August 2011

  • Brown, S. D.; Guss, A. M.; Karpinets, T. V.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1102444108

Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum
journal, January 1989


Pyruvate Formate Lyase Acts as a Formate Supplier for Metabolic Processes during Anaerobiosis in Staphylococcus aureus
journal, December 2010

  • Leibig, M.; Liebeke, M.; Mader, D.
  • Journal of Bacteriology, Vol. 193, Issue 4
  • DOI: 10.1128/jb.01161-10

Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization
journal, October 2004

  • Özkan, Melek; Yllmaz, Ebru I.; Lynd, Lee R.
  • Canadian Journal of Microbiology, Vol. 50, Issue 10
  • DOI: 10.1139/w04-071

Formate synthesis by Clostridium thermocellum during anaerobic fermentation
journal, July 2006

  • Sparling, Richard; Islam, Rumana; Cicek, Nazim
  • Canadian Journal of Microbiology, Vol. 52, Issue 7
  • DOI: 10.1139/w06-021

Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress
journal, January 2012


Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation
journal, January 2011

  • Raman, Babu; McKeown, Catherine K; Rodriguez, Miguel
  • BMC Microbiology, Vol. 11, Issue 1, Article No. 134
  • DOI: 10.1186/1471-2180-11-134

Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
journal, January 2012

  • Guss, Adam M.; Olson, Daniel G.; Caiazza, Nicky C.
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-30

Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
journal, January 2013

  • Wilson, Charlotte M.; Yang, Shihui; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-131

The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
journal, October 2014

  • Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/s13068-014-0155-1

Increase in Ethanol Yield via Elimination of Lactate Production in an Ethanol-Tolerant Mutant of Clostridium thermocellum
journal, February 2014


Works referencing / citing this record:

CO 2 -fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum
journal, October 2016

  • Xiong, Wei; Lin, Paul P.; Magnusson, Lauren
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 46
  • DOI: 10.1073/pnas.1605482113

Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics
journal, April 2018

  • Whitham, Jason M.; Moon, Ji-Won; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-018-1095-y

Engineering microbes for direct fermentation of cellulose to bioethanol
journal, February 2018


CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313
journal, August 2019

  • Ganguly, Joyshree; Martin‐Pascual, Maria; Kranenburg, Richard
  • Microbial Biotechnology, Vol. 13, Issue 2
  • DOI: 10.1111/1751-7915.13516

Evolutionary engineering of Geobacillus thermoglucosidasius for improved ethanol production : Evolutionary Engineering of
journal, April 2016

  • Zhou, Jiewen; Wu, Kang; Rao, Christopher V.
  • Biotechnology and Bioengineering, Vol. 113, Issue 10
  • DOI: 10.1002/bit.25983

Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism
journal, January 2017

  • Biswas, Ranjita; Wilson, Charlotte M.; Giannone, Richard J.
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-016-0684-x

Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
journal, June 2016


Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase
journal, October 2017


Expression of adhA from different organisms in Clostridium thermocellum
journal, November 2017


Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass
journal, January 2020

  • Mazzoli, Roberto
  • Biotechnology and Applied Biochemistry, Vol. 67, Issue 1
  • DOI: 10.1002/bab.1869

Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii
journal, October 2015


Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction–modification systems
journal, July 2019

  • Riley, Lauren A.; Ji, Lexiang; Schmitz, Robert J.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 46, Issue 9-10
  • DOI: 10.1007/s10295-019-02218-x

Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase
journal, October 2017


Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii
journal, October 2015


Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
journal, June 2016


Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism
journal, January 2017

  • Biswas, Ranjita; Wilson, Charlotte M.; Giannone, Richard J.
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-016-0684-x

Expression of adhA from different organisms in Clostridium thermocellum
journal, November 2017


Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics
journal, April 2018

  • Whitham, Jason M.; Moon, Ji-Won; Rodriguez, Miguel
  • Biotechnology for Biofuels, Vol. 11, Issue 1
  • DOI: 10.1186/s13068-018-1095-y