DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward

Abstract

The goals of the Mix Campaign are to determine how mix affects performance, locate the "mix cliff", locate the source of the mix, and develop mitigation methods that allow performance to be increased. We have used several different drive pulse shapes and capsule designs in the Mix Campaign, to understand sensitivity to drive peak power, level of coast, rise time to peak power, adiabat, and dopant level in the capsule. Ablator material mixing into the hot spot has been shown conclusively with x-ray spectroscopy. The observed neutron yield drops steeply when the hot spot mix mass becomes too large. The mix appears to be driven by ablation- front Rayleigh-Taylor instabilities. A high foot, higher adiabat drive has a more stable ablation front and has allowed the mix mass in the hot spot to be reduced significantly. We found two recent high foot shots achieved neutron yields > 1015 and measured neutron yield over clean 1D simulation (YOC) > 50%, which was one of the central goals of the Mix Campaign.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3];  [3];  [1] more »;  [4];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [6];  [5];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [6];  [1];  [1];  [1];  [1];  [3];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1280925
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Conference Series
Additional Journal Information:
Journal Volume: 688; Journal ID: ISSN 1742-6588
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Remington, B. A., Atherton, L. J., Benedetti, L. R., Berzak-Hopkins, L., Bradley, D. K., Callahan, D. A., Casey, D. T., Celliers, P. M., Cerjan, C. J., Clark, D. S., Dewald, E. L., Dittrich, T. R., Dixit, S. N., Döppner, T., Edgell, D. H., Edwards, M. J., Epstein, R., Frenje, J., Gatu-Johnson, M., Glenn, S., Glenzer, S. H., Grim, G., Haan, S. W., Hammel, B. A., Hamza, A., Hicks, D., Hsing, W. W., Hurricane, O., Izumi, N., Jones, O. S., Key, M. H., Khan, S. F., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Le Pape, S., Lindl, J. D., Ma, T., MacGowan, B. J., Mackinnon, A. J., MacPhee, A. G., Meezan, N. B., Moody, J. D., Moses, E. I., Nikroo, A., Pak, A., Parham, T., Park, H. -S., Patel, P. K., Petrasso, R., Pino, J., Ralph, J. E., Raman, K., Regan, S. P., Robey, H. F., Ross, J. S., Spears, B. K., Smalyuk, V. A., Springer, P. T., Suter, L. J., Tipton, R., Tommasini, R., Town, R. P., and Weber, S. V. Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward. United States: N. p., 2016. Web. doi:10.1088/1742-6596/688/1/012090.
Remington, B. A., Atherton, L. J., Benedetti, L. R., Berzak-Hopkins, L., Bradley, D. K., Callahan, D. A., Casey, D. T., Celliers, P. M., Cerjan, C. J., Clark, D. S., Dewald, E. L., Dittrich, T. R., Dixit, S. N., Döppner, T., Edgell, D. H., Edwards, M. J., Epstein, R., Frenje, J., Gatu-Johnson, M., Glenn, S., Glenzer, S. H., Grim, G., Haan, S. W., Hammel, B. A., Hamza, A., Hicks, D., Hsing, W. W., Hurricane, O., Izumi, N., Jones, O. S., Key, M. H., Khan, S. F., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Le Pape, S., Lindl, J. D., Ma, T., MacGowan, B. J., Mackinnon, A. J., MacPhee, A. G., Meezan, N. B., Moody, J. D., Moses, E. I., Nikroo, A., Pak, A., Parham, T., Park, H. -S., Patel, P. K., Petrasso, R., Pino, J., Ralph, J. E., Raman, K., Regan, S. P., Robey, H. F., Ross, J. S., Spears, B. K., Smalyuk, V. A., Springer, P. T., Suter, L. J., Tipton, R., Tommasini, R., Town, R. P., & Weber, S. V. Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward. United States. https://doi.org/10.1088/1742-6596/688/1/012090
Remington, B. A., Atherton, L. J., Benedetti, L. R., Berzak-Hopkins, L., Bradley, D. K., Callahan, D. A., Casey, D. T., Celliers, P. M., Cerjan, C. J., Clark, D. S., Dewald, E. L., Dittrich, T. R., Dixit, S. N., Döppner, T., Edgell, D. H., Edwards, M. J., Epstein, R., Frenje, J., Gatu-Johnson, M., Glenn, S., Glenzer, S. H., Grim, G., Haan, S. W., Hammel, B. A., Hamza, A., Hicks, D., Hsing, W. W., Hurricane, O., Izumi, N., Jones, O. S., Key, M. H., Khan, S. F., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Le Pape, S., Lindl, J. D., Ma, T., MacGowan, B. J., Mackinnon, A. J., MacPhee, A. G., Meezan, N. B., Moody, J. D., Moses, E. I., Nikroo, A., Pak, A., Parham, T., Park, H. -S., Patel, P. K., Petrasso, R., Pino, J., Ralph, J. E., Raman, K., Regan, S. P., Robey, H. F., Ross, J. S., Spears, B. K., Smalyuk, V. A., Springer, P. T., Suter, L. J., Tipton, R., Tommasini, R., Town, R. P., and Weber, S. V. Fri . "Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward". United States. https://doi.org/10.1088/1742-6596/688/1/012090. https://www.osti.gov/servlets/purl/1280925.
@article{osti_1280925,
title = {Hydrodynamic instabilities and mix studies on NIF: predictions, observations, and a path forward},
author = {Remington, B. A. and Atherton, L. J. and Benedetti, L. R. and Berzak-Hopkins, L. and Bradley, D. K. and Callahan, D. A. and Casey, D. T. and Celliers, P. M. and Cerjan, C. J. and Clark, D. S. and Dewald, E. L. and Dittrich, T. R. and Dixit, S. N. and Döppner, T. and Edgell, D. H. and Edwards, M. J. and Epstein, R. and Frenje, J. and Gatu-Johnson, M. and Glenn, S. and Glenzer, S. H. and Grim, G. and Haan, S. W. and Hammel, B. A. and Hamza, A. and Hicks, D. and Hsing, W. W. and Hurricane, O. and Izumi, N. and Jones, O. S. and Key, M. H. and Khan, S. F. and Kilkenny, J. D. and Kline, J. L. and Kyrala, G. A. and Landen, O. L. and Le Pape, S. and Lindl, J. D. and Ma, T. and MacGowan, B. J. and Mackinnon, A. J. and MacPhee, A. G. and Meezan, N. B. and Moody, J. D. and Moses, E. I. and Nikroo, A. and Pak, A. and Parham, T. and Park, H. -S. and Patel, P. K. and Petrasso, R. and Pino, J. and Ralph, J. E. and Raman, K. and Regan, S. P. and Robey, H. F. and Ross, J. S. and Spears, B. K. and Smalyuk, V. A. and Springer, P. T. and Suter, L. J. and Tipton, R. and Tommasini, R. and Town, R. P. and Weber, S. V.},
abstractNote = {The goals of the Mix Campaign are to determine how mix affects performance, locate the "mix cliff", locate the source of the mix, and develop mitigation methods that allow performance to be increased. We have used several different drive pulse shapes and capsule designs in the Mix Campaign, to understand sensitivity to drive peak power, level of coast, rise time to peak power, adiabat, and dopant level in the capsule. Ablator material mixing into the hot spot has been shown conclusively with x-ray spectroscopy. The observed neutron yield drops steeply when the hot spot mix mass becomes too large. The mix appears to be driven by ablation- front Rayleigh-Taylor instabilities. A high foot, higher adiabat drive has a more stable ablation front and has allowed the mix mass in the hot spot to be reduced significantly. We found two recent high foot shots achieved neutron yields > 1015 and measured neutron yield over clean 1D simulation (YOC) > 50%, which was one of the central goals of the Mix Campaign.},
doi = {10.1088/1742-6596/688/1/012090},
journal = {Journal of Physics. Conference Series},
number = ,
volume = 688,
place = {United States},
year = {Fri Apr 01 00:00:00 EDT 2016},
month = {Fri Apr 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Two-Dimensional Simulation of Fluid Instability in Laser-Fusion Pellets
journal, May 1975


Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients
journal, August 1988


Weakly nonlinear hydrodynamic instabilities in inertial fusion
journal, August 1991

  • Haan, S. W.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 8
  • DOI: 10.1063/1.859603

Hydrodynamic stability and the direct drive approach to laser fusion
journal, May 1990

  • Tabak, M.; Munro, D. H.; Lindl, J. D.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 5
  • DOI: 10.1063/1.859274

Nonlinear evolution of multimode Rayleigh–Taylor instability in two and three dimensions
journal, June 1995

  • Shvarts, D.; Alon, U.; Ofer, D.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871476

Self‐consistent stability analysis of ablation fronts in inertial confinement fusion
journal, May 1996

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871664

Nonlinear Evolution of Ablation-Driven Rayleigh-Taylor Instability
journal, February 1981


Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells
journal, January 1982


Rayleigh–Taylor instability on the pusher–fuel contact surface of stagnating targets
journal, November 1990

  • Sakagami, H.; Nishihara, K.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 11
  • DOI: 10.1063/1.859395

Modeling of Nova indirect drive Rayleigh–Taylor experiments
journal, November 1994

  • Weber, S. V.; Remington, B. A.; Haan, S. W.
  • Physics of Plasmas, Vol. 1, Issue 11
  • DOI: 10.1063/1.870900

Three-Dimensional Single Mode Rayleigh-Taylor Experiments on Nova
journal, November 1995


Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs
journal, August 2011

  • Clark, D. S.; Haan, S. W.; Cook, A. W.
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3609834

Observations of the Rayleigh–Taylor instability in laser imploded microballoons
journal, April 1986

  • Wark, J. S.; Kilkenny, J. D.; Cole, A. J.
  • Applied Physics Letters, Vol. 48, Issue 15
  • DOI: 10.1063/1.96626

Experimental results on hydrodynamic instabilities in laser‐accelerated planar packages
journal, June 1990

  • Kilkenny, J. D.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 6
  • DOI: 10.1063/1.859563

Single‐mode and multimode Rayleigh–Taylor experiments on Nova
journal, January 1995

  • Remington, B. A.; Weber, S. V.; Marinak, M. M.
  • Physics of Plasmas, Vol. 2, Issue 1
  • DOI: 10.1063/1.871096

Experimental Comparison of Classical versus Ablative Rayleigh-Taylor Instability
journal, June 1996


Direct-drive hydrodynamic instability experiments on the GEKKO XII laser
journal, November 1997

  • Azechi, H.; Nakai, M.; Shigemori, K.
  • Physics of Plasmas, Vol. 4, Issue 11
  • DOI: 10.1063/1.872528

Ablation front Rayleigh–Taylor growth experiments in spherically convergent geometry
journal, May 2000

  • Glendinning, S. G.; Colvin, J.; Haan, S.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874024

Evolution of Shell Nonuniformities near Peak Compression of a Spherical Implosion
journal, September 2001


Rayleigh-Taylor Growth Stabilization in Direct-Drive Plastic Targets at Laser Intensities of 1 × 10 15 W / cm 2
journal, July 2008


Convergent Rayleigh-Taylor Experiments on the Nova Laser
journal, December 1999


Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


Works referencing / citing this record:

Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser
journal, January 2019

  • Bel’kov, S. A.; Bondarenko, S. V.; Demchenko, N. N.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 2
  • DOI: 10.1088/1361-6587/aaf062