DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

Abstract

There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. In conclusion, the present research will broaden the applications of ferritic alloys to higher temperatures.

Authors:
 [1];  [1];  [1];  [2];  [3];  [4];  [5];  [6];  [6];  [1];  [1];  [7];  [4];  [1];  [3];  [3];  [2];  [3];  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Tohoku Univ., Sendai (Japan)
  3. Northwestern Univ., Evanston, IL (United States)
  4. Univ. of California, Berkeley, CA (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. City Univ. of Hong Kong (Hong Kong)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1259493
Alternate Identifier(s):
OSTI ID: 1265957; OSTI ID: 1321756
Report Number(s):
LA-UR-15-22106
Journal ID: ISSN 2045-2322; srep16327
Grant/Contract Number:  
AC52-06NA-25396; FE0005868; 09NT0008089; FE-0011194; FE-0024054; AC05-00OR22725; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; mechanical properties; metals and alloys

Citation Formats

Song, Gian, Sun, Zhiqian, Li, Lin, Xu, Xiandong, Rawlings, Michael, Liebscher, Christian H., Clausen, Bjørn, Poplawsky, Jonathan, Leonard, Donovan N., Huang, Shenyan, Teng, Zhenke, Liu, Chain T., Asta, Mark D., Gao, Yanfei, Dunand, David C., Ghosh, Gautam, Chen, Mingwei, Fine, Morris E., and Liaw, Peter K. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. United States: N. p., 2015. Web. doi:10.1038/srep16327.
Song, Gian, Sun, Zhiqian, Li, Lin, Xu, Xiandong, Rawlings, Michael, Liebscher, Christian H., Clausen, Bjørn, Poplawsky, Jonathan, Leonard, Donovan N., Huang, Shenyan, Teng, Zhenke, Liu, Chain T., Asta, Mark D., Gao, Yanfei, Dunand, David C., Ghosh, Gautam, Chen, Mingwei, Fine, Morris E., & Liaw, Peter K. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. United States. https://doi.org/10.1038/srep16327
Song, Gian, Sun, Zhiqian, Li, Lin, Xu, Xiandong, Rawlings, Michael, Liebscher, Christian H., Clausen, Bjørn, Poplawsky, Jonathan, Leonard, Donovan N., Huang, Shenyan, Teng, Zhenke, Liu, Chain T., Asta, Mark D., Gao, Yanfei, Dunand, David C., Ghosh, Gautam, Chen, Mingwei, Fine, Morris E., and Liaw, Peter K. Mon . "Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates". United States. https://doi.org/10.1038/srep16327. https://www.osti.gov/servlets/purl/1259493.
@article{osti_1259493,
title = {Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates},
author = {Song, Gian and Sun, Zhiqian and Li, Lin and Xu, Xiandong and Rawlings, Michael and Liebscher, Christian H. and Clausen, Bjørn and Poplawsky, Jonathan and Leonard, Donovan N. and Huang, Shenyan and Teng, Zhenke and Liu, Chain T. and Asta, Mark D. and Gao, Yanfei and Dunand, David C. and Ghosh, Gautam and Chen, Mingwei and Fine, Morris E. and Liaw, Peter K.},
abstractNote = {There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. In conclusion, the present research will broaden the applications of ferritic alloys to higher temperatures.},
doi = {10.1038/srep16327},
journal = {Scientific Reports},
number = ,
volume = 5,
place = {United States},
year = {Mon Nov 09 00:00:00 EST 2015},
month = {Mon Nov 09 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The description of elevated temperature deformation in terms of threshold stresses and back stresses: A review
journal, September 1980


Materials for Ultrasupercritical Coal Power Plants - Boiler Materials: Part 1
journal, February 2001


Optimal precipitate shapes in nickel-base γ–γ′ alloys
journal, February 2012


Creep-Resisting Alloys For Gas Turbines
journal, May 1951


Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding
journal, November 2007


Brittle intermetallic compound makes ultrastrong low-density steel with large ductility
journal, February 2015

  • Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.
  • Nature, Vol. 518, Issue 7537
  • DOI: 10.1038/nature14144

Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding
journal, May 2008


The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy
journal, January 2003

  • Wang, Yan-Dong; Tian, Hongbo; Stoica, Alexandru D.
  • Nature Materials, Vol. 2, Issue 2
  • DOI: 10.1038/nmat812

On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels
journal, January 2007


Materials for ultra-supercritical coal-fired power plant boilers
journal, November 2006

  • Viswanathan, R.; Coleman, K.; Rao, U.
  • International Journal of Pressure Vessels and Piping, Vol. 83, Issue 11-12
  • DOI: 10.1016/j.ijpvp.2006.08.006

Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength
journal, October 2009


Geometric considerations for diffusion in polycrystalline solids
journal, March 2007

  • Chen, Ying; Schuh, Christopher A.
  • Journal of Applied Physics, Vol. 101, Issue 6
  • DOI: 10.1063/1.2711820

Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels
journal, September 2014


Softening of nanocrystalline metals at very small grain sizes
journal, February 1998

  • Schiøtz, Jakob; Di Tolla, Francesco D.; Jacobsen, Karsten W.
  • Nature, Vol. 391, Issue 6667
  • DOI: 10.1038/35328

Advances in Physical Metallurgy and Processing of Steels. Design of Ferritic Creep-resistant Steels.
journal, January 2001


Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging
journal, July 2009

  • Raabe, Dierk; Ponge, Dirk; Dmitrieva, Olga
  • Advanced Engineering Materials, Vol. 11, Issue 7
  • DOI: 10.1002/adem.200900061

Modeling the creep threshold stress due to climb of a dislocation in the stress field of a misfitting precipitate
journal, August 2011


Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography
journal, July 2010


Ferritic Fe–Al–Ni–Cr alloys with coherent precipitates for high-temperature applications
journal, December 2004


The strongest size
journal, February 1998


NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

New design aspects of creep-resistant NiAl-strengthened ferritic alloys
journal, March 2013


On the formation of hierarchically structured L2 1 -Ni2TiAl type precipitates in a ferritic alloy
journal, November 2012


Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy
journal, June 2014


Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy
journal, August 2012


Creep of Metals
journal, April 1946


Elastically induced shape bifurcations of inclusions
journal, November 1984


The growth of γ′ precipitates in nickel-base superalloys
journal, January 1983


Intergranular strain evolution near fatigue crack tips in polycrystalline metals
journal, November 2011

  • Zheng, L. L.; Gao, Y. F.; Lee, S. Y.
  • Journal of the Mechanics and Physics of Solids, Vol. 59, Issue 11
  • DOI: 10.1016/j.jmps.2011.08.001

The effect of long-term creep on particle coarsening in tempered martensite ferritic steels
journal, December 1989


U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants
journal, June 2005

  • Viswanathan, R.; Henry, J. F.; Tanzosh, J.
  • Journal of Materials Engineering and Performance, Vol. 14, Issue 3
  • DOI: 10.1361/10599490524039

Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants
journal, June 2009


Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels
journal, April 2007


Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT
journal, July 2005

  • Viswanathan, G. B.; Sarosi, Peter M.; Whitis, Deborah H.
  • Materials Science and Engineering: A, Vol. 400-401
  • DOI: 10.1016/j.msea.2005.02.068

Ferritic/martensitic steels for next-generation reactors
journal, September 2007


SMARTS - a spectrometer for strain measurement in engineering materials
journal, December 2002

  • Bourke, M. A. M.; Dunand, D. C.; Ustundag, E.
  • Applied Physics A: Materials Science & Processing, Vol. 74, Issue 0
  • DOI: 10.1007/s003390201747

Creep response and deformation processes in nanocluster-strengthened ferritic steels
journal, April 2008


Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure
journal, April 2012


In Situ Neutron-Diffraction Studies on the Creep Behavior of a Ferritic Superalloy
journal, November 2011

  • Huang, Shenyan; Brown, Donald W.; Clausen, Bjørn
  • Metallurgical and Materials Transactions A, Vol. 43, Issue 5
  • DOI: 10.1007/s11661-011-0979-2

Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions
journal, July 2003

  • Taneike, Masaki; Abe, Fujio; Sawada, Kota
  • Nature, Vol. 424, Issue 6946
  • DOI: 10.1038/nature01740

Atomic structure of nanoclusters in oxide-dispersion-strengthened steels
journal, October 2011

  • Hirata, A.; Fujita, T.; Wen, Y. R.
  • Nature Materials, Vol. 10, Issue 12, p. 922-926
  • DOI: 10.1038/nmat3150

Z phase formation in martensitic 12CrMoVNb steel
journal, July 1996


Recent advances in creep-resistant steels for power plant applications
journal, June 2003

  • Ennis, P. J.; Czyrska-Filemonowicz, A.
  • Sadhana, Vol. 28, Issue 3-4
  • DOI: 10.1007/BF02706455

Microstructural development during high temperature creep of 9% Cr steel
journal, April 1998


Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant
journal, December 1997


Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors
journal, October 2005


Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy
journal, May 1998


On the morphological development of second-phase particles in elastically-stressed solids
journal, November 1992


Creep behavior and stability of MX precipitates at high temperature in 9Cr–0.5Mo–1.8W–VNb steel
journal, December 2001


Creep behavior of the heusler type structure alloy Ni2AlTi
journal, December 1976

  • Strutt, P. R.; Polvani, R. S.; Ingram, J. C.
  • Metallurgical Transactions A, Vol. 7, Issue 1
  • DOI: 10.1007/BF02644035

High temperature creep in a semi-coherent NiAl-Ni2AlTi alloy
journal, December 1976

  • Polvani, R. S.; Tzeng, Wen-Shian; Strutt, P. R.
  • Metallurgical Transactions A, Vol. 7, Issue 1
  • DOI: 10.1007/BF02644036

Dislocations at γ/γ′ interfaces during the creep of nickel-base superalloys
journal, January 1988


Abnormal creep behavior of ferritic Fe24Cr4Al stainless steel
journal, June 1994


From embryos to precipitates: A study of nucleation and growth in a multicomponent ferritic steel
journal, November 2011


Atomic Scale Structure and Chemical Composition across Order-Disorder Interfaces
journal, February 2009


Influence of grain size on the mechanical behaviour of some high strength materials
journal, June 1986

  • Lasalmonie, A.; Strudel, J. L.
  • Journal of Materials Science, Vol. 21, Issue 6
  • DOI: 10.1007/BF00547918

Coarsening kinetics of coherent precipitates in Ni-Al-Mo and Fe-Ni-Al alloys
journal, October 1997


Model for creep threshold stress in precipitation-strengthened alloys with coherent particles
journal, October 2002


Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys
journal, September 2002


The influence of coherency strain on the elevated temperature tensile behavior of Ni-15Cr-AI-Ti-Mo alloys
journal, September 1981

  • Grose, D. A.; Ansell, G. S.
  • Metallurgical Transactions A, Vol. 12, Issue 9
  • DOI: 10.1007/BF02643569

Elastically Induced Shape Bifurcations of Inclusions
book, September 1998


Creep of Metals
journal, April 1932


Atom Probe Tomography: The working group “Atom Probe Tomography” is headed by Prof. Dr. Peter Felfer.
journal, August 2018

  • Felfer, P.; Stevenson, L.; Li, T.
  • Practical Metallography, Vol. 55, Issue 8
  • DOI: 10.3139/147.110543

Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging
journal, July 2009

  • Raabe, Dierk; Ponge, Dirk; Dmitrieva, Olga
  • Advanced Engineering Materials, Vol. 11, Issue 7
  • DOI: 10.1002/adem.200900061

The effect of long-term creep on particle coarsening in tempered martensite ferritic steels
journal, December 1989


Optimal precipitate shapes in nickel-base γ–γ′ alloys
journal, February 2012


Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions
journal, July 2003

  • Taneike, Masaki; Abe, Fujio; Sawada, Kota
  • Nature, Vol. 424, Issue 6946
  • DOI: 10.1038/nature01740

Atomic structure of nanoclusters in oxide-dispersion-strengthened steels
journal, October 2011

  • Hirata, A.; Fujita, T.; Wen, Y. R.
  • Nature Materials, Vol. 10, Issue 12, p. 922-926
  • DOI: 10.1038/nmat3150

The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy
journal, January 2003

  • Wang, Yan-Dong; Tian, Hongbo; Stoica, Alexandru D.
  • Nature Materials, Vol. 2, Issue 2
  • DOI: 10.1038/nmat812

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Closure to “Discussions of ‘A Time-Temperature Relationship for Rupture and Creep Stresses’” (1952, Trans. ASME, 74, pp. 771–774)
journal, July 1952

  • Larson, F. R.; Miller, James
  • Journal of Fluids Engineering, Vol. 74, Issue 5
  • DOI: 10.1115/1.4015915

Z phase formation in martensitic 12CrMoVNb steel
journal, July 1996


Works referencing / citing this record:

Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
journal, December 2016


Creep of Heusler-Type Alloy Fe-25Al-25Co
journal, January 2020

  • Dobeš, Ferdinand; Dymáček, Petr; Friák, Martin
  • Crystals, Vol. 10, Issue 1
  • DOI: 10.3390/cryst10010052

Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys
journal, June 2018


Effect of Ti substitution for Al on the cuboidal nanoprecipitates in Al 0.7 NiCoFeCr 2 high-entropy alloys
journal, August 2018

  • Li, Chunling; Ma, Yue; Hao, Jiamiao
  • Journal of Materials Research, Vol. 33, Issue 19
  • DOI: 10.1557/jmr.2018.213

Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source
journal, December 2017


Thermal Analysis of the Formation and Dissolution of Cr‐Rich Carbides in Al‐Alloyed Stainless Steels
journal, September 2018

  • Rahimi, Reza; Volkova, Olena; Biermann, Horst
  • Advanced Engineering Materials, Vol. 21, Issue 5
  • DOI: 10.1002/adem.201800658

Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys.
text, January 2018

  • Jones, Rd; Di Gioacchino, Fabio; Lim, H.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.28120

A Review on Nano-Scale Precipitation in Steels
journal, March 2018


Mechanical behavior of high-entropy alloys: A review
preprint, January 2021