DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions

Abstract

Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long-term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li-stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchanged even under a high exchange rate of 63.6%. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. Furthermore, these observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.

Authors:
 [1];  [1];  [1];  [2];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1185524
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 54; Journal Issue: 1; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium batteries; solid electrolytes; garnet; proton exchange; electron microscopy

Citation Formats

Ma, Cheng, Rangasamy, Ezhiylmurugan, Liang, Chengdu, Sakamoto, Jeffrey, More, Karren Leslie, and Chi, Miaofang. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. United States: N. p., 2014. Web. doi:10.1002/anie.201408124.
Ma, Cheng, Rangasamy, Ezhiylmurugan, Liang, Chengdu, Sakamoto, Jeffrey, More, Karren Leslie, & Chi, Miaofang. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. United States. https://doi.org/10.1002/anie.201408124
Ma, Cheng, Rangasamy, Ezhiylmurugan, Liang, Chengdu, Sakamoto, Jeffrey, More, Karren Leslie, and Chi, Miaofang. Tue . "Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions". United States. https://doi.org/10.1002/anie.201408124. https://www.osti.gov/servlets/purl/1185524.
@article{osti_1185524,
title = {Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions},
author = {Ma, Cheng and Rangasamy, Ezhiylmurugan and Liang, Chengdu and Sakamoto, Jeffrey and More, Karren Leslie and Chi, Miaofang},
abstractNote = {Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long-term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li-stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchanged even under a high exchange rate of 63.6%. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. Furthermore, these observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.},
doi = {10.1002/anie.201408124},
journal = {Angewandte Chemie (International Edition)},
number = 1,
volume = 54,
place = {United States},
year = {Tue Oct 21 00:00:00 EDT 2014},
month = {Tue Oct 21 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 98 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12
journal, January 2012

  • Howard, M. A.; Clemens, O.; Kendrick, E.
  • Dalton Transactions, Vol. 41, Issue 39
  • DOI: 10.1039/c2dt31318a

Chemical and microstructural modifications in LiPON thin films exposed to atmospheric humidity
journal, March 2011


Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions
journal, February 2011


Aqueous Cathode for Next-Generation Alkali-Ion Batteries
journal, April 2011

  • Lu, Yuhao; Goodenough, John B.; Kim, Youngsik
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja201118f

High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode
journal, May 2013

  • Zhao, Yu; Wang, Lina; Byon, Hye Ryung
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2907

First Total H + /Li + Ion Exchange in Garnet-Type Li 5 La 3 Nb 2 O 12 Using Organic Acids and Studies on the Effect of Li Stuffing
journal, January 2012

  • Truong, Lina; Thangadurai, Venkataraman
  • Inorganic Chemistry, Vol. 51, Issue 3
  • DOI: 10.1021/ic202491m

A critical review on lithium–air battery electrolytes
journal, January 2014

  • Balaish, Moran; Kraytsberg, Alexander; Ein-Eli, Yair
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 7
  • DOI: 10.1039/c3cp54165g

Aqueous Lithium/Air Rechargeable Batteries
journal, July 2011

  • Zhang, Tao; Imanishi, Nobuyuki; Takeda, Yasuo
  • Chemistry Letters, Vol. 40, Issue 7
  • DOI: 10.1246/cl.2011.668

A study on lithium/air secondary batteries—Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions
journal, June 2011


Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12
journal, July 2012


Instability of Lithium Garnets against Moisture. Structural Characterization and Dynamics of Li 7- x H x La 3 Sn 2 O 12 and Li 5- x H x La 3 Nb 2 O 12
journal, August 2012

  • Galven, Cyrille; Dittmer, Jens; Suard, Emmanuelle
  • Chemistry of Materials, Vol. 24, Issue 17
  • DOI: 10.1021/cm300964k

Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration
journal, January 2013

  • Larraz, G.; Orera, A.; Sanjuán, M. L.
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta11996c

Stability of NaSICON-type Li1.3Al0.3Ti1.7P3O12 in aqueous solutions
journal, May 2013


Lithium-air and lithium-sulfur batteries
journal, July 2011

  • Bruce, Peter G.; Hardwick, Laurence J.; Abraham, K. M.
  • MRS Bulletin, Vol. 36, Issue 7
  • DOI: 10.1557/mrs.2011.157

Schnelle Lithiumionenleitung in granatartigem Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie, Vol. 119, Issue 41
  • DOI: 10.1002/ange.200701144

Chemical stability of Li-stuffed garnet-type Li5+xBaxLa3−xTa2O12 (x=0, 0.5, 1) in water: a comparative analysis with the Nb analogue
journal, October 2013


Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor Li 7 La 3 Zr 2 O 12 Doped with Fe
journal, July 2013

  • Rettenwander, Daniel; Geiger, Charles A.; Amthauer, Georg
  • Inorganic Chemistry, Vol. 52, Issue 14
  • DOI: 10.1021/ic400589u

A reversible Br 2 /Br redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries
journal, January 2014

  • Zhao, Yu; Ding, Yu; Song, Jie
  • Energy Environ. Sci., Vol. 7, Issue 6
  • DOI: 10.1039/c4ee00407h

Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
journal, January 2011

  • Wang, Feng; Graetz, Jason; Moreno, M. Sergio
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn1028168

Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12
journal, January 2012

  • Han, Jiantao; Zhu, Jinlong; Li, Yutao
  • Chemical Communications, Vol. 48, Issue 79
  • DOI: 10.1039/c2cc35089k

Alternative Approach to Increasing Li Mobility in Li-La-Nb/Ta Garnet Electrolytes
journal, October 2010

  • Nyman, May; Alam, Todd M.; McIntyre, Sarah K.
  • Chemistry of Materials, Vol. 22, Issue 19
  • DOI: 10.1021/cm101438x

Structure and ionic conductivity in lithium garnets
journal, January 2010

  • Cussen, Edmund J.
  • Journal of Materials Chemistry, Vol. 20, Issue 25
  • DOI: 10.1039/b925553b

A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions
journal, September 2010


Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water
journal, April 2009


Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12
journal, February 2012


Reinvestigation of the Total Li + /H + Ion Exchange on the Garnet-Type Li 5 La 3 Nb 2 O 12
journal, December 2013

  • Gam, Franck; Galven, Cyrille; Bulou, Alain
  • Inorganic Chemistry, Vol. 53, Issue 2
  • DOI: 10.1021/ic402326b

Z-Contrast Transmission Electron Microscopy: Direct Atomic Imaging of Materials
journal, August 1992


Aqueous Lithium-Air Rechargeable Batteries
journal, January 2012


Structural characterization of a new acentric protonated garnet: Li 6− x H x CaLa 2 Nb 2 O 12
journal, August 2013

  • Galven, Cyrille; Suard, Emmanuelle; Mounier, Denis
  • Journal of Materials Research, Vol. 28, Issue 16
  • DOI: 10.1557/jmr.2013.209

A Li-Liquid Cathode Battery Based on a Hybrid Electrolyte
journal, August 2011


Instability of the Lithium Garnet Li 7 La 3 Sn 2 O 12 : Li + /H + Exchange and Structural Study
journal, April 2011

  • Galven, Cyrille; Fourquet, Jean-Louis; Crosnier-Lopez, Marie-Pierre
  • Chemistry of Materials, Vol. 23, Issue 7
  • DOI: 10.1021/cm103595x

Lithium–liquid battery: harvesting lithium from waste Li-ion batteries and discharging with water
journal, January 2012

  • Asl, Nina Mahootcheian; Cheah, Seong Shen; Salim, Jason
  • RSC Advances, Vol. 2, Issue 14
  • DOI: 10.1039/c2ra20814h

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
journal, August 2010

  • Luo, Jia-Yan; Cui, Wang-Jun; He, Ping
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.763

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries
journal, June 2012

  • Wang, Yarong; He, Ping; Zhou, Haoshen
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 770-779
  • DOI: 10.1002/aenm.201200100

An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode
journal, March 2013

  • Wang, Xujiong; Hou, Yuyang; Zhu, Yusong
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01401

Works referencing / citing this record:

Progress of the Interface Design in All-Solid-State Li-S Batteries
journal, March 2018

  • Yue, Junpei; Yan, Min; Yin, Ya-Xia
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707533

The Ab Initio Calculations on the Areal Specific Resistance of Li‐Metal/Li 7 La 3 Zr 2 O 12 Interphase
journal, April 2019


Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
journal, March 2016

  • Ma, Cheng; Cheng, Yongqiang; Chen, Kai
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201600053

Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
journal, January 2018

  • Chen, Wei; Lei, Tianyu; Wu, Chunyang
  • Advanced Energy Materials, Vol. 8, Issue 10
  • DOI: 10.1002/aenm.201702348

Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
journal, April 2019


Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
journal, April 2019

  • Wang, Yingqi; Lü, Xujie; Zheng, Chong
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201901739

Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance
journal, January 2017

  • Sharafi, Asma; Yu, Seungho; Naguib, Michael
  • Journal of Materials Chemistry A, Vol. 5, Issue 26
  • DOI: 10.1039/c7ta03162a

Local Li-ion conductivity changes within Al stabilized Li 7 La 3 Zr 2 O 12 and their relationship to three-dimensional variations of the bulk composition
journal, January 2019

  • Smetaczek, Stefan; Wachter-Welzl, Andreas; Wagner, Reinhard
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c9ta00356h

Oxide Electrolytes for Lithium Batteries
journal, September 2015

  • Ren, Yaoyu; Chen, Kai; Chen, Rujun
  • Journal of the American Ceramic Society, Vol. 98, Issue 12
  • DOI: 10.1111/jace.13844