DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

Abstract

The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.

Authors:
 [1];  [2];  [3];  [4];  [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [4];  [3]; ORCiD logo [1];  [2];  [1];  [1]
  1. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Seoul National Univ. (Korea, Republic of)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1177000
Report Number(s):
BNL-107669-2015-JA; BNL-107669-2015-JAAM
Journal ID: ISSN 2041-1723; R&D Project: MA453MAEA; VT1201000
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Wang, Yuesheng, Liu, Jue, Lee, Byungju, Qiao, Ruimin, Yang, Zhenzhong, Xu, Shuyin, Yu, Xiqian, Gu, Lin, Hu, Yong-Sheng, Yang, Wanli, Kang, Kisuk, Li, Hong, Yang, Xiao-Qing, Chen, Liquan, and Huang, Xuejie. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. United States: N. p., 2015. Web. doi:10.1038/ncomms7401.
Wang, Yuesheng, Liu, Jue, Lee, Byungju, Qiao, Ruimin, Yang, Zhenzhong, Xu, Shuyin, Yu, Xiqian, Gu, Lin, Hu, Yong-Sheng, Yang, Wanli, Kang, Kisuk, Li, Hong, Yang, Xiao-Qing, Chen, Liquan, & Huang, Xuejie. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. United States. https://doi.org/10.1038/ncomms7401
Wang, Yuesheng, Liu, Jue, Lee, Byungju, Qiao, Ruimin, Yang, Zhenzhong, Xu, Shuyin, Yu, Xiqian, Gu, Lin, Hu, Yong-Sheng, Yang, Wanli, Kang, Kisuk, Li, Hong, Yang, Xiao-Qing, Chen, Liquan, and Huang, Xuejie. Wed . "Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries". United States. https://doi.org/10.1038/ncomms7401. https://www.osti.gov/servlets/purl/1177000.
@article{osti_1177000,
title = {Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries},
author = {Wang, Yuesheng and Liu, Jue and Lee, Byungju and Qiao, Ruimin and Yang, Zhenzhong and Xu, Shuyin and Yu, Xiqian and Gu, Lin and Hu, Yong-Sheng and Yang, Wanli and Kang, Kisuk and Li, Hong and Yang, Xiao-Qing and Chen, Liquan and Huang, Xuejie},
abstractNote = {The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.},
doi = {10.1038/ncomms7401},
journal = {Nature Communications},
number = ,
volume = 6,
place = {United States},
year = {Wed Mar 25 00:00:00 EDT 2015},
month = {Wed Mar 25 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 244 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Lithium Insertion Processes of Orthorhombic Na[sub x]MnO[sub 2]-Based Electrode Materials
journal, January 1996

  • Doeff, Marca M.
  • Journal of The Electrochemical Society, Vol. 143, Issue 8
  • DOI: 10.1149/1.1837039

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2
journal, September 2004

  • Doeff, Marca M.; Richardson, Thomas J.; Hwang, Kwang-Taek
  • Journal of Power Sources, Vol. 135, Issue 1-2, p. 240-248
  • DOI: 10.1016/j.jpowsour.2004.03.073

Study of the Insertion/Deinsertion Mechanism of Sodium into Na 0.44 MnO 2
journal, April 2007

  • Sauvage, F.; Laffont, L.; Tarascon, J. -M.
  • Inorganic Chemistry, Vol. 46, Issue 8
  • DOI: 10.1021/ic0700250

First experimental results from IBM/TENN/TULANE/LLNL/LBL undulator beamline at the advanced light source
journal, February 1995

  • Jia, J. J.; Callcott, T. A.; Yurkas, J.
  • Review of Scientific Instruments, Vol. 66, Issue 2
  • DOI: 10.1063/1.1145985

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


An advanced cathode for Na-ion batteries with high rate and excellent structural stability
journal, January 2013

  • Lee, Dae Hoe; Xu, Jing; Meng, Ying Shirley
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44467d

A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
journal, January 2012

  • Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.
  • Nature Communications, Vol. 3, Issue 1, Article No. 1149
  • DOI: 10.1038/ncomms2139

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011

  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2
journal, March 2010


Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Update on Na-based battery materials. A growing research path
journal, January 2013

  • Palomares, Verónica; Casas-Cabanas, Montse; Castillo-Martínez, Elizabeth
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41031e

Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries
journal, January 2011

  • Park, Sun Il; Gocheva, Irina; Okada, Shigeto
  • Journal of The Electrochemical Society, Vol. 158, Issue 10
  • DOI: 10.1149/1.3611434

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials
journal, November 2012

  • Guignard, Marie; Didier, Christophe; Darriet, Jacques
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3478

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Orthorhombic Na[sub x]MnO[sub 2] as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries
journal, January 1994

  • Doeff, Marca M.
  • Journal of The Electrochemical Society, Vol. 141, Issue 11
  • DOI: 10.1149/1.2059323

The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery
journal, January 2011

  • Carlier, D.; Cheng, J. H.; Berthelot, R.
  • Dalton Transactions, Vol. 40, Issue 36
  • DOI: 10.1039/c1dt10798d

Single-Crystal Synthesis and Structure Refinement of Na<sub>0.44</sub>MnO<sub>2</sub>
journal, April 2011


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Study of the Insertion/Deinsertion Mechanism of Sodium into Na0.44MnO2.
journal, July 2007


Sodium-Ion Batteries
journal, June 2018

  • Rojo, Teofilo; Hu, Yong-Sheng; Forsyth, Maria
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201800880

Electrical Conductivities of Na[sub 0.44]Mn[sub 1−x]Ti[sub x]O[sub 2]
journal, January 2009

  • Funabiki, Fuji; Hayakawa, Hiroshi; Kijima, Norihito
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 11
  • DOI: 10.1149/1.3212681

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
journal, August 2010

  • Luo, Jia-Yan; Cui, Wang-Jun; He, Ping
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.763

Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes
journal, December 2013


Electrochemical investigation of the P2–NaxCoO2 phase diagram
journal, December 2010

  • Berthelot, R.; Carlier, D.; Delmas, C.
  • Nature Materials, Vol. 10, Issue 1
  • DOI: 10.1038/nmat2920

Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides
journal, May 2013


The structure of Na4Mn4Ti5O18
journal, August 1968

  • Mumme, W. G.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 24, Issue 8, p. 1114-1120
  • DOI: 10.1107/S0567740868003778

Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading
journal, January 2015


Full open-framework batteries for stationary energy storage
journal, January 2014

  • Pasta, Mauro; Wessells, Colin D.; Liu, Nian
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4007

Coupled Commensurate Cation and Charge Modulation in the Tunneled Structure, Na 0.40(2) MnO 2
journal, September 2011

  • Kruk, Izabela; Zajdel, Pawel; van Beek, Wouter
  • Journal of the American Chemical Society, Vol. 133, Issue 35
  • DOI: 10.1021/ja109707q

Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi 2 (PO 4 ) 3 /Na 0.44 MnO 2 System
journal, October 2012


Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na 2 CuFe(CN) 6 -NaTi 2 (PO 4 ) 3 Intercalation Chemistry
journal, January 2014


Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life
journal, June 2011

  • Cao, Yuliang; Xiao, Lifen; Wang, Wei
  • Advanced Materials, Vol. 23, Issue 28, p. 3155-3160
  • DOI: 10.1002/adma.201100904

First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method
journal, January 1997

  • Anisimov, Vladimir I.; Aryasetiawan, F.; Lichtenstein, A. I.
  • Journal of Physics: Condensed Matter, Vol. 9, Issue 4, p. 767-808
  • DOI: 10.1088/0953-8984/9/4/002

High-resolution X-ray luminescence extension imaging
journal, February 2021


Recent Progress in Aqueous Lithium-Ion Batteries
journal, June 2012

  • Wang, Yonggang; Yi, Jin; Xia, Yongyao
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200065

The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries
journal, January 2012

  • Lee, Jin-Hyon; Black, Robert; Popov, Guerman
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee21543h

Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device
journal, March 2010


High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode
journal, November 2012


Sodium Storage and Transport Properties in Layered Na 2 Ti 3 O 7 for Room-Temperature Sodium-Ion Batteries
journal, May 2013


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Aqueous Rechargeable Li and Na Ion Batteries
journal, September 2014

  • Kim, Haegyeom; Hong, Jihyun; Park, Kyu-Young
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500232y

STEM characterization for lithium-ion battery cathode materials
journal, February 2012


A 3.8-V earth-abundant sodium battery electrode
journal, July 2014

  • Barpanda, Prabeer; Oyama, Gosuke; Nishimura, Shin-ichi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5358

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Thermodynamic analysis on energy densities of batteries
journal, January 2011

  • Zu, Chen-Xi; Li, Hong
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c0ee00777c

Superior Electrochemical Performance and Storage Mechanism of Na 3 V 2 (PO 4 ) 3 Cathode for Room-Temperature Sodium-Ion Batteries
journal, October 2012


P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Electrochemical intercalation and deintercalation of NaxMnO2 bronzes
journal, May 1985


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
journal, May 2013

  • Sun, Yang; Zhao, Liang; Pan, Huilin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2878

Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na 0.44 MnO 2 for Sodium-Ion Battery
journal, March 2012

  • Kim, Heejin; Kim, Dong Jun; Seo, Dong-Hwa
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm300065y

Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides
text, January 2012


Layered Transition Metal Oxides as Cathodes for Sodium Secondary Battery
journal, June 2006

  • Okada, Shigeto; Takahashi, Yusuke; Kiyabu, Toshiyasu
  • ECS Meeting Abstracts, Vol. MA2006-02, Issue 4
  • DOI: 10.1149/MA2006-02/4/201

Works referencing / citing this record:

Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics
journal, June 2016

  • Chen, Liang; Shao, Hezhu; Zhou, Xufeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11982

Rechargeable Aqueous Electrochromic Batteries Utilizing Ti‐Substituted Tungsten Molybdenum Oxide Based Zn 2+ Ion Intercalation Cathodes
journal, February 2019

  • Li, Haizeng; McRae, Liam; Firby, Curtis J.
  • Advanced Materials, Vol. 31, Issue 15
  • DOI: 10.1002/adma.201807065

A novel aqueous ammonium dual-ion battery based on organic polymers
journal, January 2019

  • Zhang, Yadi; An, Yufeng; Yin, Bo
  • Journal of Materials Chemistry A, Vol. 7, Issue 18
  • DOI: 10.1039/c9ta00254e

Understanding Challenges of Cathode Materials for Sodium‐Ion Batteries using Synchrotron‐Based X‐Ray Absorption Spectroscopy
journal, July 2019

  • Chen, Mingzhe; Chou, Shu‐Lei; Dou, Shi‐Xue
  • Batteries & Supercaps, Vol. 2, Issue 10
  • DOI: 10.1002/batt.201900054

NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage
journal, May 2019


Aqueous Batteries Operated at −50 °C
journal, November 2019

  • Nian, Qingshun; Wang, Jiayue; Liu, Shuang
  • Angewandte Chemie International Edition, Vol. 58, Issue 47
  • DOI: 10.1002/anie.201908913

Na–Mn–O@C yolk–shell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries
journal, January 2017

  • Li, Jiannian; Yu, Jun; Amiinu, Ibrahim Saana
  • Journal of Materials Chemistry A, Vol. 5, Issue 35
  • DOI: 10.1039/c7ta06046g

Unexpectedly high electrochemical performances of a monoclinic Na 2.4 V 2 (PO 4 ) 3 /conductive polymer composite for Na-ion batteries
journal, January 2018

  • Lee, Yongseok; Yoo, Jung-Keun; Oh, Youngseok
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta06238b

An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na 3 MnTi(PO 4 ) 3
journal, September 2016


Deciphering an Abnormal Layered‐Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode
journal, January 2020

  • Xiao, Yao; Zhu, Yan‐Fang; Xiang, Wei
  • Angewandte Chemie International Edition, Vol. 59, Issue 4
  • DOI: 10.1002/anie.201912101

Different crystallographic sodium manganese oxides for capacitive deionization: performance comparison and the associated mechanism
journal, January 2019

  • Zhao, Yubo; Liang, Bolong; Zong, Mingzhu
  • Environmental Science: Nano, Vol. 6, Issue 10
  • DOI: 10.1039/c9en00759h

A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid‐State Batteries
journal, December 2019

  • Zhang, Ying; Shi, Yang; Hu, Xin‐Cheng
  • Advanced Energy Materials, Vol. 10, Issue 3
  • DOI: 10.1002/aenm.201903325

Impact of Na 2 MoO 4 nanolayers autogenously formed on tunnel-type Na 0.44 MnO 2
journal, January 2019

  • Choi, Ji Ung; Jo, Jae Hyeon; Jo, Chang-Heum
  • Journal of Materials Chemistry A, Vol. 7, Issue 22
  • DOI: 10.1039/c9ta03844b

Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application
journal, March 2019


A Synergistic Na-Mn-O Composite Cathodes for High-Capacity Na-Ion Storage
journal, October 2018

  • Wang, Xuanpeng; Wang, Chenyang; Han, Kang
  • Advanced Energy Materials, Vol. 8, Issue 33
  • DOI: 10.1002/aenm.201802180

The influence of large cations on the electrochemical properties of tunnel-structured metal oxides
journal, November 2016

  • Yuan, Yifei; Zhan, Chun; He, Kun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13374

Composite‐Structure Materials for Na‐Ion Batteries
journal, October 2018


Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, April 2019


Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness
journal, December 2018

  • Li, Yejing; Wang, Xuefeng; Gao, Yurui
  • Advanced Energy Materials, Vol. 9, Issue 4
  • DOI: 10.1002/aenm.201803087

A durable VO 2 (M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion
journal, January 2020

  • Zhang, Lishang; Miao, Ling; Zhang, Bao
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta11031c

A Novel High Capacity Positive Electrode Material with Tunnel-Type Structure for Aqueous Sodium-Ion Batteries
journal, August 2015

  • Wang, Yuesheng; Mu, Linqin; Liu, Jue
  • Advanced Energy Materials, Vol. 5, Issue 22
  • DOI: 10.1002/aenm.201501005

Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries
journal, January 2018

  • He, Pan; Zhang, Guobin; Liao, Xiaobin
  • Advanced Energy Materials, Vol. 8, Issue 10
  • DOI: 10.1002/aenm.201702463

Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
journal, September 2017


Faradaic reactions in capacitive deionization for desalination and ion separation
journal, January 2019

  • Yu, Fei; Wang, Lei; Wang, Ying
  • Journal of Materials Chemistry A, Vol. 7, Issue 27
  • DOI: 10.1039/c9ta01264h

High valence Mo-doped Na 3 V 2 (PO 4 ) 3 /C as a high rate and stable cycle-life cathode for sodium battery
journal, January 2018

  • Li, Xiang; Huang, Yangyang; Wang, Jingsong
  • Journal of Materials Chemistry A, Vol. 6, Issue 4
  • DOI: 10.1039/c7ta08970h

Preparation and electrochemical performance of VO 2 (A) hollow spheres as a cathode for aqueous zinc ion batteries
journal, January 2019

  • Li, Runxia; Yu, Xin; Bian, Xiaofei
  • RSC Advances, Vol. 9, Issue 60
  • DOI: 10.1039/c9ra07340j

Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, May 2019

  • Wan, Fang; Zhang, Yan; Zhang, Linlin
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902679

A Layered-Tunnel Intergrowth Structure for High-Performance Sodium-Ion Oxide Cathode
journal, May 2018

  • Xiao, Yao; Wang, Peng-Fei; Yin, Ya-Xia
  • Advanced Energy Materials, Vol. 8, Issue 22
  • DOI: 10.1002/aenm.201800492

Realization of Ti Doping by Electrostatic Assembly to Improve the Stability of LiCoO 2 Cycled to 4.5 V
journal, January 2019

  • Sun, Liwei; Zhang, Zeshu; Hu, Xuefeng
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0421910jes

An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode
journal, August 2018

  • Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli
  • Angewandte Chemie International Edition, Vol. 57, Issue 36
  • DOI: 10.1002/anie.201807121

Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life
journal, January 2016


Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate
journal, November 2016

  • Wu, Shaofei; Wang, Wenxi; Li, Minchan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13318

Na-Mn-O Nanocrystals as a High Capacity and Long Life Anode Material for Li-Ion Batteries
journal, November 2016


Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery
journal, July 2018


Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery
journal, April 2019


An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na 3 MnTi(PO 4 ) 3
journal, September 2016

  • Gao, Hongcai; Goodenough, John B.
  • Angewandte Chemie International Edition, Vol. 55, Issue 41
  • DOI: 10.1002/anie.201606508

Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh‐Capacity Cathode for Rechargeable Zinc Ion Battery
journal, May 2019


Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects
journal, February 2017


A New Strategy to Build a High‐Performance P′2‐Type Cathode Material through Titanium Doping for Sodium‐Ion Batteries
journal, May 2019

  • Park, Yun Ji; Choi, Ji Ung; Jo, Jae Hyeon
  • Advanced Functional Materials, Vol. 29, Issue 28
  • DOI: 10.1002/adfm.201901912

An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode
journal, August 2018


Sodium-Ion Battery Materials and Electrochemical Properties Reviewed
journal, April 2018

  • Chayambuka, Kudakwashe; Mulder, Grietus; Danilov, Dmitri L.
  • Advanced Energy Materials, Vol. 8, Issue 16
  • DOI: 10.1002/aenm.201800079

A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production
journal, January 2018


Universal quinone electrodes for long cycle life aqueous rechargeable batteries
journal, June 2017

  • Liang, Yanliang; Jing, Yan; Gheytani, Saman
  • Nature Materials, Vol. 16, Issue 8
  • DOI: 10.1038/nmat4919

Ti-based electrode materials for electrochemical sodium ion storage and removal
journal, January 2019

  • Zhai, Haifa; Xia, Bao Yu; Park, Ho Seok
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta06713b

High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries
journal, July 2018

  • Wang, Yuesheng; Feng, Zimin; Zhu, Wen
  • Materials, Vol. 11, Issue 8
  • DOI: 10.3390/ma11081294

Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries
journal, September 2015


Understanding Oxygen Redox in Cu-Doped P2-Na 0.67 Mn 0.8 Fe 0.1 Co 0.1 O 2 Cathode Materials for Na-Ion Batteries
journal, January 2018

  • Li, Ling; Wang, Huibo; Han, Wenze
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0691816jes

Zero-strain K 0.6 Mn 1 F 2.7 hollow nanocubes for ultrastable potassium ion storage
journal, January 2018

  • Liu, Zhiwei; Li, Ping; Suo, Guoquan
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/c8ee01611a

Ni-based cathode materials for Na-ion batteries
journal, June 2019


Carbon-Coated Na 2.2 V 1.2 Ti 0.8 (PO 4 ) 3 Cathode with Excellent Cycling Performance for Aqueous Sodium-Ion Batteries
journal, June 2018


Development of a new alluaudite-based cathode material with high power and long cyclability for application in Na ion batteries in real-life
journal, January 2017

  • Kim, Jongsoon; Kim, Hyungsub; Lee, Seongsu
  • J. Mater. Chem. A, Vol. 5, Issue 42
  • DOI: 10.1039/c7ta06693g

Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries
journal, November 2018

  • Zhu, Wen; Wang, Yuesheng; Liu, Dongqiang
  • Energies, Vol. 11, Issue 11
  • DOI: 10.3390/en11112963

High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode
journal, October 2017

  • Deng, Jianqiu; Luo, Wen-Bin; Lu, Xiao
  • Advanced Energy Materials, Vol. 8, Issue 5
  • DOI: 10.1002/aenm.201701610

Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries
journal, February 2018


Na 2.3 Cu 1.1 Mn 2 O 7−δ nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach
journal, January 2020

  • Soundharrajan, Vaiyapuri; Sambandam, Balaji; Alfaruqi, Muhammad H.
  • Journal of Materials Chemistry A, Vol. 8, Issue 2
  • DOI: 10.1039/c9ta09890a

Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry
journal, January 2019

  • Demir-Cakan, Rezan; Palacin, M. Rosa; Croguennec, Laurence
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta04735b

Deciphering an Abnormal Layered‐Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode
journal, December 2019


Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Na-Ion Batteries
journal, January 2018


Electrochemical Intercalation of Potassium into Graphite
journal, September 2016

  • Zhao, Jin; Zou, Xiaoxi; Zhu, Yujie
  • Advanced Functional Materials, Vol. 26, Issue 44
  • DOI: 10.1002/adfm.201602248

Exploration of Advanced Electrode Materials for Rechargeable Sodium‐Ion Batteries
journal, July 2018

  • Sun, Yang; Guo, Shaohua; Zhou, Haoshen
  • Advanced Energy Materials, Vol. 9, Issue 23
  • DOI: 10.1002/aenm.201800212

Caging Na 3 V 2 (PO 4 ) 2 F 3 Microcubes in Cross-Linked Graphene Enabling Ultrafast Sodium Storage and Long-Term Cycling
journal, July 2018


Boron Substituted Na 3 V 2 (P 1 −x B x O 4 ) 3 Cathode Materials with Enhanced Performance for Sodium-Ion Batteries
journal, August 2016


Review—Practical Issues and Future Perspective for Na-Ion Batteries
journal, January 2015

  • Kubota, Kei; Komaba, Shinichi
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0151514jes

Progress in Aqueous Rechargeable Sodium-Ion Batteries
journal, March 2018

  • Bin, Duan; Wang, Fei; Tamirat, Andebet Gedamu
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703008

Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes
journal, September 2018


Fe-Based Tunnel-Type Na 0.61 [Mn 0.27 Fe 0.34 Ti 0.39 ]O 2 Designed by a New Strategy as a Cathode Material for Sodium-Ion Batteries
journal, August 2015

  • Xu, Shuyin; Wang, Yuesheng; Ben, Liubin
  • Advanced Energy Materials, Vol. 5, Issue 22
  • DOI: 10.1002/aenm.201501156

Extremely Small Pyrrhotite Fe 7 S 8 Nanocrystals with Simultaneous Carbon-Encapsulation for High-Performance Na-Ion Batteries
journal, November 2017


Boron Substituted Na 3 V 2 (P 1−x B x O 4 ) 3 Cathode Materials with Enhanced Performance for Sodium-Ion Batteries
journal, January 2017


Layered VS 2 Nanosheet-Based Aqueous Zn Ion Battery Cathode
journal, January 2017


Red blood cell-like hollow carbon sphere anchored ultrathin Na 2 Ti 3 O 7 nanosheets as long cycling and high rate-performance anodes for sodium-ion batteries
journal, January 2018

  • Chen, Sheng; Pang, Yuanchao; Liang, Jin
  • Journal of Materials Chemistry A, Vol. 6, Issue 27
  • DOI: 10.1039/c8ta03799j

Aqueous Batteries Operated at −50 °C
journal, November 2019


Porous V 2 O 5 microspheres: a high-capacity cathode material for aqueous zinc–ion batteries
journal, January 2019

  • Hu, Ping; Zhu, Ting; Ma, Jingxuan
  • Chemical Communications, Vol. 55, Issue 58
  • DOI: 10.1039/c9cc04053f