DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

Abstract

Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

Authors:
 [1];  [2];  [1];  [2];  [1]
  1. Chinese Academy of Sciences (CAS), Beijing (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1164333
Report Number(s):
BNL-107069-2014-JA
Journal ID: ISSN 1998-0124; VT1201000-05450-1005554
Grant/Contract Number:  
AC02-98CH10886
Resource Type:
Accepted Manuscript
Journal Name:
Nano Research
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 1998-0124
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodium iron hexacyanoferrate; Na rich cathode; sodium-ion batteries; Prussian blue analogues; national synchrotron light source

Citation Formats

You, Ya, Yu, Xi -Qian, Yin, Ya -Xia, Nam, Kyung -Wan, and Guo, Yu -Guo. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. United States: N. p., 2014. Web. doi:10.1007/s12274-014-0588-7.
You, Ya, Yu, Xi -Qian, Yin, Ya -Xia, Nam, Kyung -Wan, & Guo, Yu -Guo. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. United States. https://doi.org/10.1007/s12274-014-0588-7
You, Ya, Yu, Xi -Qian, Yin, Ya -Xia, Nam, Kyung -Wan, and Guo, Yu -Guo. Mon . "Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries". United States. https://doi.org/10.1007/s12274-014-0588-7. https://www.osti.gov/servlets/purl/1164333.
@article{osti_1164333,
title = {Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries},
author = {You, Ya and Yu, Xi -Qian and Yin, Ya -Xia and Nam, Kyung -Wan and Guo, Yu -Guo},
abstractNote = {Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.},
doi = {10.1007/s12274-014-0588-7},
journal = {Nano Research},
number = 1,
volume = 8,
place = {United States},
year = {Mon Oct 27 00:00:00 EDT 2014},
month = {Mon Oct 27 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 274 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries
journal, September 2010

  • Ji, Heng-Xing; Wu, Xing-Long; Fan, Li-Zhen
  • Advanced Materials, Vol. 22, Issue 41
  • DOI: 10.1002/adma.201001422

Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes
journal, February 2014

  • Kong, Biao; Tang, Jing; Wu, Zhangxiong
  • Angewandte Chemie International Edition, Vol. 53, Issue 11
  • DOI: 10.1002/anie.201308625

Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries
journal, October 2011

  • Komaba, Shinichi; Ishikawa, Toru; Yabuuchi, Naoaki
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 11
  • DOI: 10.1021/am200973k

Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
journal, June 2013

  • Zhu, Hongli; Jia, Zheng; Chen, Yuchen
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400998t

Photoinduced phase transition of RbMnFe ( CN ) 6 studied by x-ray-absorption fine structure spectroscopy
journal, November 2002


Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials
journal, May 2013


Porous CuO nanowires as the anode of rechargeable Na-ion batteries
journal, December 2013


Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na 2 CuFe(CN) 6 -NaTi 2 (PO 4 ) 3 Intercalation Chemistry
journal, January 2014


Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life
journal, June 2011

  • Cao, Yuliang; Xiao, Lifen; Wang, Wei
  • Advanced Materials, Vol. 23, Issue 28, p. 3155-3160
  • DOI: 10.1002/adma.201100904

Single Crystalline Na 0.7 MnO 2 Nanoplates as Cathode Materials for Sodium-Ion Batteries with Enhanced Performance
journal, July 2013

  • Su, Dawei; Wang, Chengyin; Ahn, Hyo-jun
  • Chemistry - A European Journal, Vol. 19, Issue 33
  • DOI: 10.1002/chem.201301563

Transparent films from carbon nanotubes/Prussian blue nanocomposites: preparation, characterization, and application as electrochemical sensors
journal, January 2012

  • Nossol, Edson; Gorgatti Zarbin, Aldo José
  • J. Mater. Chem., Vol. 22, Issue 5
  • DOI: 10.1039/C1JM14225A

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries
journal, November 2013

  • Su, Dawei; Ahn, Hyo-Jun; Wang, Guoxiu
  • NPG Asia Materials, Vol. 5, Issue 11
  • DOI: 10.1038/am.2013.56

Prussian blue: a new framework of electrode materials for sodium batteries
journal, January 2012

  • Lu, Yuhao; Wang, Long; Cheng, Jinguang
  • Chemical Communications, Vol. 48, Issue 52, p. 6544-6546
  • DOI: 10.1039/c2cc31777j

Cobalt Hexacyanoferrate as Cathode Material for Na + Secondary Battery
journal, February 2013

  • Takachi, Masamitsu; Matsuda, Tomoyuki; Moritomo, Yutaka
  • Applied Physics Express, Vol. 6, Issue 2
  • DOI: 10.7567/APEX.6.025802

A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability
journal, September 2013

  • Park, Young-Uk; Seo, Dong-Hwa; Kwon, Hyung-Soon
  • Journal of the American Chemical Society, Vol. 135, Issue 37
  • DOI: 10.1021/ja406016j

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
journal, January 2012

  • Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.
  • Nature Communications, Vol. 3, Issue 1, Article No. 1149
  • DOI: 10.1038/ncomms2139

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

Precise Electrochemical Control of Ferromagnetism in a Cyanide-Bridged Bimetallic Coordination Polymer
journal, September 2012

  • Mizuno, Yoshifumi; Okubo, Masashi; Kagesawa, Koichi
  • Inorganic Chemistry, Vol. 51, Issue 19
  • DOI: 10.1021/ic301361h

Synthesis of Na 1.25 V 3 O 8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries
journal, November 2013

  • Liang, Shuquan; Chen, Tao; Pan, Anqiang
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 22
  • DOI: 10.1021/am403635s

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011

  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries
journal, January 2013

  • You, Ya; Wu, Xing-Long; Yin, Ya-Xia
  • Journal of Materials Chemistry A, Vol. 1, Issue 45
  • DOI: 10.1039/c3ta13223d

Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach
journal, January 2012

  • Giorgetti, Marco; Guadagnini, Lorella; Tonelli, Domenica
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 16
  • DOI: 10.1039/c2cp24109a

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials
journal, November 2012

  • Guignard, Marie; Didier, Christophe; Darriet, Jacques
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3478

Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries
journal, January 2012

  • Lee, Hongkyung; Kim, Yong-Il; Park, Jung-Ki
  • Chemical Communications, Vol. 48, Issue 67, p. 8416-8418
  • DOI: 10.1039/c2cc33771a

Mössbauer Study of Soluble Prussian Blue, Insoluble Prussian Blue, and Turnbull's Blue
journal, April 1968

  • Ito, A.; Suenaga, M.; Ôno, K.
  • The Journal of Chemical Physics, Vol. 48, Issue 8
  • DOI: 10.1063/1.1669656

Redox-Active Fe(CN) 6 4− -Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries
journal, October 2011


Non-Prussian Blue Structures and Magnetic Ordering of Na 2 Mn II [Mn II (CN) 6 ] and Na 2 Mn II [Mn II (CN) 6 ]·2H 2 O
journal, January 2012

  • Kareis, Christopher M.; Lapidus, Saul H.; Her, Jae-Hyuk
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209799y

Ion-Induced Transformation of Magnetism in a Bimetallic CuFe Prussian Blue Analogue
journal, May 2011

  • Okubo, Masashi; Asakura, Daisuke; Mizuno, Yoshifumi
  • Angewandte Chemie International Edition, Vol. 50, Issue 28
  • DOI: 10.1002/anie.201102048

Photoinduced Ferrimagnetic Systems in Prussian Blue Analogues C I x Co 4 [Fe(CN) 6 ] y (C I = Alkali Cation). 1. Conditions to Observe the Phenomenon
journal, July 2000

  • Bleuzen, Anne; Lomenech, Claire; Escax, Virginie
  • Journal of the American Chemical Society, Vol. 122, Issue 28
  • DOI: 10.1021/ja000348u

SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage
journal, June 2012


Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance
journal, December 2012


High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries
journal, January 2014

  • You, Ya; Wu, Xing-Long; Yin, Ya-Xia
  • Energy Environ. Sci., Vol. 7, Issue 5
  • DOI: 10.1039/C3EE44004D

NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery
journal, September 2012


Cathode properties of metal trifluorides in Li and Na secondary batteries
journal, May 2009


Mesoporous Prussian Blue Analogues: Template-Free Synthesis and Sodium-Ion Battery Applications
journal, February 2014

  • Yue, Yanfeng; Binder, Andrew J.; Guo, Bingkun
  • Angewandte Chemie International Edition, Vol. 53, Issue 12
  • DOI: 10.1002/anie.201310679

Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability
journal, February 2013

  • Asakura, Daisuke; Li, Carissa H.; Mizuno, Yoshifumi
  • Journal of the American Chemical Society, Vol. 135, Issue 7
  • DOI: 10.1021/ja312160v

Redox reactions in Prussian blue containing paint layers as a result of light exposure
journal, January 2013

  • Samain, Louise; Gilbert, Bernard; Grandjean, Fernande
  • Journal of Analytical Atomic Spectrometry, Vol. 28, Issue 4
  • DOI: 10.1039/c3ja30359d

Formation of Fe 2 O 3 Microboxes with Hierarchical Shell Structures from Metal–Organic Frameworks and Their Lithium Storage Properties
journal, October 2012

  • Zhang, Lei; Wu, Hao Bin; Madhavi, Srinivasan
  • Journal of the American Chemical Society, Vol. 134, Issue 42
  • DOI: 10.1021/ja307475c

Symmetry Switch of Cobalt Ferrocyanide Framework by Alkaline Cation Exchange
journal, September 2010

  • Matsuda, Tomoyuki; Kim, Jungeun; Moritomo, Yutaka
  • Journal of the American Chemical Society, Vol. 132, Issue 35
  • DOI: 10.1021/ja105482k

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Better lithium-ion batteries with nanocable-like electrode materials
journal, January 2011

  • Cao, Fei-Fei; Guo, Yu-Guo; Wan, Li-Jun
  • Energy & Environmental Science, Vol. 4, Issue 5
  • DOI: 10.1039/c0ee00583e

Advanced asymmetrical supercapacitors based on graphene hybrid materials
journal, April 2011


WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances
journal, January 2014

  • Su, Dawei; Dou, Shixue; Wang, Guoxiu
  • Chemical Communications, Vol. 50, Issue 32
  • DOI: 10.1039/c4cc00840e

Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials
journal, January 2013

  • Bak, Seong-Min; Nam, Kyung-Wan; Chang, Wonyoung
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303096e

IFEFFIT  : interactive XAFS analysis and FEFF fitting
journal, March 2001


A Superior Low-Cost Cathode for a Na-Ion Battery
journal, January 2013

  • Wang, Long; Lu, Yuhao; Liu, Jue
  • Angewandte Chemie International Edition, Vol. 52, Issue 7
  • DOI: 10.1002/anie.201206854

A sodium manganese ferrocyanide thin film for Na-ion batteries
journal, January 2013

  • Matsuda, Tomoyuki; Takachi, Masamitsu; Moritomo, Yutaka
  • Chemical Communications, Vol. 49, Issue 27
  • DOI: 10.1039/c3cc38839e

Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance
journal, November 2013


Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries
journal, January 2014

  • Su, D. W.; Dou, S. X.; Wang, G. X.
  • Journal of Materials Chemistry A, Vol. 2, Issue 29
  • DOI: 10.1039/c4ta01751j

High-Capacity Silicon-Air Battery in Alkaline Solution
journal, December 2011


A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
journal, August 2013

  • Wang, Yuesheng; Yu, Xiqian; Xu, Shuyin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3365

A Superior Low-Cost Cathode for a Na-Ion Battery
journal, January 2013


Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes
journal, February 2014


Mesoporous Prussian Blue Analogues: Template-Free Synthesis and Sodium-Ion Battery Applications
journal, February 2014

  • Yue, Yanfeng; Binder, Andrew J.; Guo, Bingkun
  • Angewandte Chemie, Vol. 126, Issue 12
  • DOI: 10.1002/ange.201310679

Ion-Induced Transformation of Magnetism in a Bimetallic CuFe Prussian Blue Analogue
journal, May 2011

  • Okubo, Masashi; Asakura, Daisuke; Mizuno, Yoshifumi
  • Angewandte Chemie, Vol. 123, Issue 28
  • DOI: 10.1002/ange.201102048

Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials
preprint, January 2011


Works referencing / citing this record:

Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries
journal, December 2016

  • Zhang, Chenglin; Xu, Yang; Zhou, Min
  • Advanced Functional Materials, Vol. 27, Issue 4
  • DOI: 10.1002/adfm.201604307

Prussian Blue@MoS 2 Layer Composites as Highly Efficient Cathodes for Sodium- and Potassium-Ion Batteries
journal, December 2017

  • Morant-Giner, Marc; Sanchis-Gual, Roger; Romero, Jorge
  • Advanced Functional Materials, Vol. 28, Issue 27
  • DOI: 10.1002/adfm.201706125

Prussian White Hierarchical Nanotubes with Surface‐Controlled Charge Storage for Sodium‐Ion Batteries
journal, February 2019

  • Ren, Wenhao; Zhu, Zixuan; Qin, Mingsheng
  • Advanced Functional Materials, Vol. 29, Issue 15
  • DOI: 10.1002/adfm.201806405

High‐Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodium‐Ion Batteries
journal, January 2020

  • Tang, Yun; Li, Wei; Feng, Pingyuan
  • Advanced Functional Materials, Vol. 30, Issue 10
  • DOI: 10.1002/adfm.201908754

Subzero-Temperature Cathode for a Sodium-Ion Battery
journal, June 2016


High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage
journal, October 2016

  • Su, Dawei; McDonagh, Andrew; Qiao, Shi-Zhang
  • Advanced Materials, Vol. 29, Issue 1
  • DOI: 10.1002/adma.201604007

A Safer Sodium-Ion Battery Based on Nonflammable Organic Phosphate Electrolyte
journal, April 2016


An Aqueous Ca-Ion Battery
journal, October 2017

  • Gheytani, Saman; Liang, Yanliang; Wu, Feilong
  • Advanced Science, Vol. 4, Issue 12
  • DOI: 10.1002/advs.201700465

Recent Progress in Electrode Materials for Sodium-Ion Batteries
journal, July 2016

  • Kim, Hyungsub; Kim, Haegyeom; Ding, Zhang
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600943

Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance
journal, November 2017


Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries
journal, January 2018

  • Qian, Jiangfeng; Wu, Chen; Cao, Yuliang
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201702619

Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries
journal, December 2018


High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies
journal, February 2019

  • Chen, Mingzhe; Liu, Qiannan; Wang, Shi‐Wen
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201803609

Flexible Na/K‐Ion Full Batteries from the Renewable Cotton Cloth–Derived Stable, Low‐Cost, and Binder‐Free Anode and Cathode
journal, August 2019

  • Guo, Jin‐Zhi; Gu, Zhen‐Yi; Zhao, Xin‐Xin
  • Advanced Energy Materials, Vol. 9, Issue 38
  • DOI: 10.1002/aenm.201902056

Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching
journal, June 2016


Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching
journal, June 2016

  • Zhang, Wei; Zhao, Yanyi; Malgras, Victor
  • Angewandte Chemie International Edition, Vol. 55, Issue 29
  • DOI: 10.1002/anie.201600661

Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016

  • Wang, Peng-Fei; You, Ya; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201602202

High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries
journal, January 2018


Understanding Challenges of Cathode Materials for Sodium‐Ion Batteries using Synchrotron‐Based X‐Ray Absorption Spectroscopy
journal, July 2019

  • Chen, Mingzhe; Chou, Shu‐Lei; Dou, Shi‐Xue
  • Batteries & Supercaps, Vol. 2, Issue 10
  • DOI: 10.1002/batt.201900054

Ultrafine Prussian Blue as a High‐Rate and Long‐Life Sodium‐Ion Battery Cathode
journal, May 2019


Extremely Small Pyrrhotite Fe 7 S 8 Nanocrystals with Simultaneous Carbon-Encapsulation for High-Performance Na-Ion Batteries
journal, November 2017


Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Na-Ion Batteries
journal, January 2018


Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices?
journal, April 2017


The pursuit of optimal sodium ions prestoring in potassium–sodium–cobalt hexacyanoferrate: toward high discharge performance supercapacitors
journal, June 2018


Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries
journal, September 2015


Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries
journal, September 2015


Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries
journal, April 2017


Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms
journal, June 2018

  • Wang, Tianyi; Su, Dawei; Shanmukaraj, Devaraj
  • Electrochemical Energy Reviews, Vol. 1, Issue 2
  • DOI: 10.1007/s41918-018-0009-9

Polypyrrole-promoted superior cyclability and rate capability of Na x Fe[Fe(CN) 6 ] cathodes for sodium-ion batteries
journal, January 2016

  • Tang, Yang; Zhang, Wuxing; Xue, Lihong
  • Journal of Materials Chemistry A, Vol. 4, Issue 16
  • DOI: 10.1039/c6ta00876c

Development of a new alluaudite-based cathode material with high power and long cyclability for application in Na ion batteries in real-life
journal, January 2017

  • Kim, Jongsoon; Kim, Hyungsub; Lee, Seongsu
  • J. Mater. Chem. A, Vol. 5, Issue 42
  • DOI: 10.1039/c7ta06693g

Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries
journal, January 2019

  • Li, Lan; Nie, Ping; Chen, Yubo
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta01965k

A flexible cyanometallate coordination polymer electrode for electrochemical dual-mode seawater energy extraction
journal, January 2019

  • Li, Yucen; Dang, Qi; Shi, Chunjing
  • Journal of Materials Chemistry A, Vol. 7, Issue 40
  • DOI: 10.1039/c9ta07540b

Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes
journal, January 2019

  • Peng, Fangwei; Yu, Lei; Gao, Pengyue
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta08603j

Electrochemical Performance of NaFeFe(CN) 6 Prepared by Solid Reaction for Sodium Ion Batteries
journal, January 2018

  • Tang, Wan; Xie, Yingying; Peng, Fangwei
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0701816jes

Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage
journal, January 2018


Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75O as Electrode Materials for Sodium-Ion Batteries
journal, April 2019

  • Prosini, Pier Paolo; Carewska, Maria; Cento, Cinzia
  • Materials, Vol. 12, Issue 7
  • DOI: 10.3390/ma12071074

Morphology and Structure of Electrodeposited Prussian Blue and Prussian White Thin Films
journal, April 2019

  • Baggio, Bruna; Vicente, Cristiano; Pelegrini, Silvia
  • Materials, Vol. 12, Issue 7
  • DOI: 10.3390/ma12071103

A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal Prussian Blue Analogs
journal, January 2018

  • Peng, Jian; Wang, Jinsong; Yi, Haocong
  • Advanced Energy Materials, Vol. 8, Issue 11
  • DOI: 10.1002/aenm.201702856

Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016


Size Engineering and Crystallinity Control Enable High‐Capacity Aqueous Potassium‐Ion Storage of Prussian White Analogues
journal, October 2018


Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”
journal, February 2018

  • Kubota, Kei; Dahbi, Mouad; Hosaka, Tomooki
  • The Chemical Record, Vol. 18, Issue 4
  • DOI: 10.1002/tcr.201700057

Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion storage
journal, January 2019

  • Zhang, Kaiqiang; Lee, Tae Hyung; Bubach, Bailey
  • RSC Advances, Vol. 9, Issue 46
  • DOI: 10.1039/c9ra03746b

Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium–sulfur batteries
journal, January 2020

  • Shen, Guohong; Liu, Zhixiao; Liu, Piao
  • Journal of Materials Chemistry A, Vol. 8, Issue 3
  • DOI: 10.1039/c9ta11209j

Cerium Hexacyanocobaltate: A Lanthanide-Compliant Prussian Blue Analogue for Li-Ion Storage
journal, December 2019


Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries
journal, February 2020


Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75O as Electrode Materials for Sodium-Ion Batteries
journal, April 2019

  • Prosini, Pier Paolo; Carewska, Maria; Cento, Cinzia
  • Materials, Vol. 12, Issue 7
  • DOI: 10.3390/ma12071074

Morphology and Structure of Electrodeposited Prussian Blue and Prussian White Thin Films
journal, April 2019

  • Baggio, Bruna; Vicente, Cristiano; Pelegrini, Silvia
  • Materials, Vol. 12, Issue 7
  • DOI: 10.3390/ma12071103