DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening

Abstract

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, GH7 CBHs are a family critically important for the bioeconomy as well as a methodology for improving these and other difficult to engineer enzymes. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ~1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially-relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorically engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55%more » increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.« less

Authors:
; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Bioenergy Technologies Office (BETO)
OSTI Identifier:
2301755
Alternate Identifier(s):
OSTI ID: 2316135
Report Number(s):
NREL/JA-2800-87398
Journal ID: ISSN 0021-9258; S002192582400125X; 105749; PII: S002192582400125X
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Name: Journal of Biological Chemistry Journal Volume: 300 Journal Issue: 3; Journal ID: ISSN 0021-9258
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; cellobiohydrolase; cellulase; cellulose; enzyme improvement; genomics; protein engineering; rational design

Citation Formats

Brunecky, Roman, Knott, Brandon C., Subramanian, Venkataramanan, Linger, Jeffrey G., Beckham, Gregg T., Amore, Antonella, Taylor, II, Larry E., Vander Wall, Todd A., Lunin, Vladimir V., Zheng, Fei, Garrido, Mercedes, Schuster, Logan, Fulk, Emily M., Farmer, Samuel, Himmel, Michael E., and Decker, Stephen R. Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening. United States: N. p., 2024. Web. doi:10.1016/j.jbc.2024.105749.
Brunecky, Roman, Knott, Brandon C., Subramanian, Venkataramanan, Linger, Jeffrey G., Beckham, Gregg T., Amore, Antonella, Taylor, II, Larry E., Vander Wall, Todd A., Lunin, Vladimir V., Zheng, Fei, Garrido, Mercedes, Schuster, Logan, Fulk, Emily M., Farmer, Samuel, Himmel, Michael E., & Decker, Stephen R. Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening. United States. https://doi.org/10.1016/j.jbc.2024.105749
Brunecky, Roman, Knott, Brandon C., Subramanian, Venkataramanan, Linger, Jeffrey G., Beckham, Gregg T., Amore, Antonella, Taylor, II, Larry E., Vander Wall, Todd A., Lunin, Vladimir V., Zheng, Fei, Garrido, Mercedes, Schuster, Logan, Fulk, Emily M., Farmer, Samuel, Himmel, Michael E., and Decker, Stephen R. Fri . "Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening". United States. https://doi.org/10.1016/j.jbc.2024.105749.
@article{osti_2301755,
title = {Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening},
author = {Brunecky, Roman and Knott, Brandon C. and Subramanian, Venkataramanan and Linger, Jeffrey G. and Beckham, Gregg T. and Amore, Antonella and Taylor, II, Larry E. and Vander Wall, Todd A. and Lunin, Vladimir V. and Zheng, Fei and Garrido, Mercedes and Schuster, Logan and Fulk, Emily M. and Farmer, Samuel and Himmel, Michael E. and Decker, Stephen R.},
abstractNote = {Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, GH7 CBHs are a family critically important for the bioeconomy as well as a methodology for improving these and other difficult to engineer enzymes. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ~1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially-relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorically engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.},
doi = {10.1016/j.jbc.2024.105749},
journal = {Journal of Biological Chemistry},
number = 3,
volume = 300,
place = {United States},
year = {Fri Mar 01 00:00:00 EST 2024},
month = {Fri Mar 01 00:00:00 EST 2024}
}

Works referenced in this record:

Clustal Omega for making accurate alignments of many protein sequences: Clustal Omega for Many Protein Sequences
journal, October 2017

  • Sievers, Fabian; Higgins, Desmond G.
  • Protein Science, Vol. 27, Issue 1
  • DOI: 10.1002/pro.3290

Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose
journal, May 1993

  • Ståhlberg, Jerry; Johansson, Gunnar; Pettersson, Göran
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1157, Issue 1
  • DOI: 10.1016/0304-4165(93)90085-M

Fungal Cellulases
journal, January 2015

  • Payne, Christina M.; Knott, Brandon C.; Mayes, Heather B.
  • Chemical Reviews, Vol. 115, Issue 3
  • DOI: 10.1021/cr500351c

Binding Site Dynamics and Aromatic–Carbohydrate Interactions in Processive and Non-Processive Family 7 Glycoside Hydrolases
journal, April 2013

  • Taylor, Courtney B.; Payne, Christina M.; Himmel, Michael E.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 17
  • DOI: 10.1021/jp401410h

Kinetics of Cellobiohydrolase (Cel7A) Variants with Lowered Substrate Affinity
journal, September 2014

  • Kari, Jeppe; Olsen, Johan; Borch, Kim
  • Journal of Biological Chemistry, Vol. 289, Issue 47
  • DOI: 10.1074/jbc.M114.604264

High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei
journal, January 1998

  • Divne, Christina; Ståhlberg, Jerry; Teeri, Tuula T.
  • Journal of Molecular Biology, Vol. 275, Issue 2, p. 309-325
  • DOI: 10.1006/jmbi.1997.1437

Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases
journal, August 2021

  • Gado, Japheth E.; Harrison, Brent E.; Sandgren, Mats
  • Journal of Biological Chemistry, Vol. 297, Issue 2
  • DOI: 10.1016/j.jbc.2021.100931

Heterologous protein expression in Hypocrea jecorina: A historical perspective and new developments
journal, January 2015


Comparative insights into the saccharification potentials of a relatively unexplored but robust Penicillium funiculosum glycoside hydrolase 7 cellobiohydrolase
journal, March 2017

  • Ogunmolu, Funso Emmanuel; Jagadeesha, Navya Bhatt Kammachi; Kumar, Rakesh
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-017-0752-x

Effect of Single Active-Site Cleft Mutation on Product Specificity in a Thermostable Bacterial Cellulase
journal, January 2002

  • Rignall, Tauna R.; Baker, John O.; McCarter, Suzanne L.
  • Applied Biochemistry and Biotechnology, Vol. 98-100, Issue 1-9
  • DOI: 10.1385/ABAB:98-100:1-9:383

A Transition from Cellulose Swelling to Cellulose Dissolution by o -Phosphoric Acid:  Evidence from Enzymatic Hydrolysis and Supramolecular Structure
journal, February 2006

  • Zhang, Y. -H. Percival; Cui, Jingbiao; Lynd, Lee R.
  • Biomacromolecules, Vol. 7, Issue 2
  • DOI: 10.1021/bm050799c

An update on enzymatic cocktails for lignocellulose breakdown
journal, July 2018

  • Lopes, A. M.; Ferreira Filho, E. X.; Moreira, L. R. S.
  • Journal of Applied Microbiology, Vol. 125, Issue 3
  • DOI: 10.1111/jam.13923

A versatile toolkit for high throughput functional genomics with Trichoderma reesei
journal, January 2012

  • Schuster, Andre; Bruno, Kenneth S.; Collett, James R.
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-1

Hypocrea jecorina CEL6A protein engineering
journal, September 2010

  • Lantz, Suzanne E.; Goedegebuur, Frits; Hommes, Ronald
  • Biotechnology for Biofuels, Vol. 3, Issue 1, Article No. 20
  • DOI: 10.1186/1754-6834-3-20

The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies
journal, December 2013

  • Knott, Brandon C.; Haddad Momeni, Majid; Crowley, Michael F.
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja410291u

SignalP 4.0: discriminating signal peptides from transmembrane regions
journal, September 2011

  • Petersen, Thomas Nordahl; Brunak, Søren; von Heijne, Gunnar
  • Nature Methods, Vol. 8, Issue 10
  • DOI: 10.1038/nmeth.1701

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution
journal, August 2017

  • Goedegebuur, Frits; Dankmeyer, Lydia; Gualfetti, Peter
  • Journal of Biological Chemistry, Vol. 292, Issue 42
  • DOI: 10.1074/jbc.M117.803270

Hypocrea jecorina Cellobiohydrolase I Stabilizing Mutations Identified Using Noncontiguous Recombination
journal, June 2013

  • Smith, Matthew A.; Bedbrook, Claire N.; Wu, Timothy
  • ACS Synthetic Biology, Vol. 2, Issue 12
  • DOI: 10.1021/sb400010m

HMMER web server: 2018 update
journal, June 2018

  • Potter, Simon C.; Luciani, Aurélien; Eddy, Sean R.
  • Nucleic Acids Research, Vol. 46, Issue W1
  • DOI: 10.1093/nar/gky448

ESPript: analysis of multiple sequence alignments in PostScript
journal, April 1999


Highly Thermostable Xylanase of the Thermophilic Fungus Talaromyces thermophilus: Purification and Characterization
journal, July 2008

  • Maalej, Ines; Belhaj, Ines; Masmoudi, Najla Fourati
  • Applied Biochemistry and Biotechnology, Vol. 158, Issue 1
  • DOI: 10.1007/s12010-008-8317-x

Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics
journal, June 2022


Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis
journal, October 2018


Transient Kinetics and Rate-Limiting Steps for the Processive Cellobiohydrolase Cel7A: Effects of Substrate Structure and Carbohydrate Binding Domain
journal, November 2013

  • Cruys-Bagger, Nicolaj; Tatsumi, Hirosuke; Ren, Guilin Robin
  • Biochemistry, Vol. 52, Issue 49
  • DOI: 10.1021/bi401210n

Status of filamentous fungi in integrated biorefineries
journal, January 2020


Fungal cellulases: protein engineering and post-translational modifications
journal, December 2021

  • Zhang, Ruiqin; Cao, Chenghao; Bi, Jiahua
  • Applied Microbiology and Biotechnology, Vol. 106, Issue 1
  • DOI: 10.1007/s00253-021-11723-y

A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina
journal, March 2015

  • Linger, Jeffrey G.; Taylor, Larry E.; Baker, John O.
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0230-2

Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast
journal, January 2021


Neutral and alkaline cellulases: Production, engineering, and applications
journal, May 2017


Engineering enhanced cellobiohydrolase activity
journal, March 2018


Physical constraints and functional plasticity of cellulases
journal, June 2021


A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei
journal, February 2017

  • Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-017-0710-7

Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases
journal, October 2008

  • Voutilainen, Sanni P.; Puranen, Terhi; Siika-aho, Matti
  • Biotechnology and Bioengineering, Vol. 101, Issue 3, p. 515-528
  • DOI: 10.1002/bit.21940

The dissociation mechanism of processive cellulases
journal, October 2019

  • Vermaas, Josh V.; Kont, Riin; Beckham, Gregg T.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 46
  • DOI: 10.1073/pnas.1913398116

Deciphering key features in protein structures with the new ENDscript server
journal, April 2014

  • Robert, Xavier; Gouet, Patrice
  • Nucleic Acids Research, Vol. 42, Issue W1
  • DOI: 10.1093/nar/gku316

Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7)
journal, January 2015

  • Colussi, Francieli; Sørensen, Trine H.; Alasepp, Kadri
  • Journal of Biological Chemistry, Vol. 290, Issue 4
  • DOI: 10.1074/jbc.M114.624163

Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity
journal, December 2009

  • Voutilainen, S. P.; Murray, P. G.; Tuohy, M. G.
  • Protein Engineering Design and Selection, Vol. 23, Issue 2
  • DOI: 10.1093/protein/gzp072

Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods
journal, August 2010

  • Sluiter, Justin B.; Ruiz, Raymond O.; Scarlata, Christopher J.
  • Journal of Agricultural and Food Chemistry, Vol. 58, Issue 16, p. 9043-9053
  • DOI: 10.1021/jf1008023

Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity
journal, December 2018

  • Schiano-di-Cola, Corinna; Røjel, Nanna; Jensen, Kenneth
  • Journal of Biological Chemistry, Vol. 294, Issue 6
  • DOI: 10.1074/jbc.RA118.006699

Catalytically Enhanced Endocellulase Cel5A from <I>Acidothermus cellulolyticus</I>
journal, January 2005

  • Baker, John O.; McCarley, James R.; Lovett, Rebecca
  • Applied Biochemistry and Biotechnology, Vol. 121, Issue 1-3
  • DOI: 10.1385/ABAB:121:1-3:0129

Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides
journal, November 2006

  • Horn, S. J.; Sikorski, P.; Cederkvist, J. B.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 48
  • DOI: 10.1073/pnas.0608909103

Loop variants of the thermophile Rasamsonia emersonii Cel7A with improved activity against cellulose : Loop Variants of the Thermophile
journal, September 2016

  • Sørensen, Trine Holst; Windahl, Michael Skovbo; McBrayer, Brett
  • Biotechnology and Bioengineering, Vol. 114, Issue 1
  • DOI: 10.1002/bit.26050

The carbohydrate-active enzyme database: functions and literature
journal, November 2021

  • Drula, Elodie; Garron, Marie-Line; Dogan, Suzan
  • Nucleic Acids Research, Vol. 50, Issue D1
  • DOI: 10.1093/nar/gkab1045

Carbohydrate–Protein Interactions That Drive Processive Polysaccharide Translocation in Enzymes Revealed from a Computational Study of Cellobiohydrolase Processivity
journal, June 2014

  • Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja504074g

Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

A family of thermostable fungal cellulases created by structure-guided recombination
journal, March 2009

  • Heinzelman, P.; Snow, C. D.; Wu, I.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 14, p. 5610-5615
  • DOI: 10.1073/pnas.0901417106

Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase
journal, June 2016

  • Cruys-Bagger, Nicolaj; Alasepp, Kadri; Andersen, Morten
  • The Journal of Physical Chemistry B, Vol. 120, Issue 25
  • DOI: 10.1021/acs.jpcb.6b01877

SWISS-MODEL: homology modelling of protein structures and complexes
journal, May 2018

  • Waterhouse, Andrew; Bertoni, Martino; Bienert, Stefan
  • Nucleic Acids Research, Vol. 46, Issue W1
  • DOI: 10.1093/nar/gky427

Endo-exo Synergism in Cellulose Hydrolysis Revisited
journal, June 2012

  • Jalak, Jürgen; Kurašin, Mihhail; Teugjas, Hele
  • Journal of Biological Chemistry, Vol. 287, Issue 34
  • DOI: 10.1074/jbc.M112.381624

Nomenclature for sugar-binding subsites in glycosyl hydrolases
journal, January 1997

  • Davies, Gideon J.; Wilson, Keith S.; Henrissat, Bernard
  • Biochemical Journal, Vol. 321, Issue 2
  • DOI: 10.1042/bj3210557

Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase
journal, September 2020


Trichoderma reesei RUT-C30 - thirty years of strain improvement
journal, October 2011


The Sabatier principle as a tool for discovery and engineering of industrial enzymes
journal, December 2022


Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A
journal, April 2012

  • Cruys-Bagger, Nicolaj; Elmerdahl, Jens; Praestgaard, Eigil
  • Journal of Biological Chemistry, Vol. 287, Issue 22
  • DOI: 10.1074/jbc.M111.334946

Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose
journal, August 2020

  • Kołaczkowski, Bartłomiej M.; Schaller, Kay S.; Sørensen, Trine Holst
  • Biotechnology for Biofuels, Vol. 13, Issue 1
  • DOI: 10.1186/s13068-020-01779-9

Construction of thermostable cellobiohydrolase I from the fungus Talaromyces cellulolyticus by protein engineering
journal, January 2019

  • Nakabayashi, Makoto; Kamachi, Saori; Malle, Dominggus
  • Protein Engineering, Design and Selection, Vol. 32, Issue 1
  • DOI: 10.1093/protein/gzz001

Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation
journal, November 2019


Processivity of Cellobiohydrolases Is Limited by the Substrate
journal, November 2010

  • Kurašin, Mihhail; Väljamäe, Priit
  • Journal of Biological Chemistry, Vol. 286, Issue 1
  • DOI: 10.1074/jbc.M110.161059

Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach
journal, January 2021


Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures
journal, March 2013

  • Wu, Indira; Arnold, Frances H.
  • Biotechnology and Bioengineering, Vol. 110, Issue 7
  • DOI: 10.1002/bit.24864

Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface
journal, September 2011


Distinct roles of N- and O-glycans in cellulase activity and stability
journal, December 2017

  • Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 52
  • DOI: 10.1073/pnas.1714249114