DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Wed Sep 11 00:00:00 EDT 2024

Title: Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra

Abstract

Abstract Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration ( R eco ), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend withmore » a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO 2 fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP, R eco , and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5];  [1]; ORCiD logo [1]; ORCiD logo [1];  [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [9]; ORCiD logo [1]
  1. Northern Arizona Univ., Flagstaff, AZ (United States)
  2. Woodwell Climate Research Center, Falmouth, MA (United States)
  3. Univ. of Texas at El Paso, TX (United States)
  4. Univ. of Massachusetts, Amherst, MA (United States)
  5. Univ. of Arkansas, Fayetteville, AR (United States)
  6. Univ. of Alaska, Fairbanks, AK (United States)
  7. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
  8. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  9. Univ. of Florida, Gainesville, FL (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
2000339
Alternate Identifier(s):
OSTI ID: 2202709
Grant/Contract Number:  
AC05-00OR22725; SC0006982; SC0014085; SC0020227
Resource Type:
Accepted Manuscript
Journal Name:
Global Change Biology
Additional Journal Information:
Journal Volume: 29; Journal Issue: 22; Journal ID: ISSN 1354-1013
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; abrupt thaw; Arctic; carbon dioxide; carbon flux; permafrost; soil moisture; thermokarst

Citation Formats

Rodenhizer, Heidi, Natali, Susan M., Mauritz, Marguerite, Taylor, Meghan A., Celis, Gerardo, Kadej, Stephanie, Kelley, Allison K., Lathrop, Emma R., Ledman, Justin, Pegoraro, Elaine F., Salmon, Verity G., Schädel, Christina, See, Craig, Webb, Elizabeth E., and Schuur, Edward G. Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra. United States: N. p., 2023. Web. doi:10.1111/gcb.16936.
Rodenhizer, Heidi, Natali, Susan M., Mauritz, Marguerite, Taylor, Meghan A., Celis, Gerardo, Kadej, Stephanie, Kelley, Allison K., Lathrop, Emma R., Ledman, Justin, Pegoraro, Elaine F., Salmon, Verity G., Schädel, Christina, See, Craig, Webb, Elizabeth E., & Schuur, Edward G. Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra. United States. https://doi.org/10.1111/gcb.16936
Rodenhizer, Heidi, Natali, Susan M., Mauritz, Marguerite, Taylor, Meghan A., Celis, Gerardo, Kadej, Stephanie, Kelley, Allison K., Lathrop, Emma R., Ledman, Justin, Pegoraro, Elaine F., Salmon, Verity G., Schädel, Christina, See, Craig, Webb, Elizabeth E., and Schuur, Edward G. Mon . "Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra". United States. https://doi.org/10.1111/gcb.16936.
@article{osti_2000339,
title = {Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra},
author = {Rodenhizer, Heidi and Natali, Susan M. and Mauritz, Marguerite and Taylor, Meghan A. and Celis, Gerardo and Kadej, Stephanie and Kelley, Allison K. and Lathrop, Emma R. and Ledman, Justin and Pegoraro, Elaine F. and Salmon, Verity G. and Schädel, Christina and See, Craig and Webb, Elizabeth E. and Schuur, Edward G.},
abstractNote = {Abstract Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration ( R eco ), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO 2 fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP, R eco , and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.},
doi = {10.1111/gcb.16936},
journal = {Global Change Biology},
number = 22,
volume = 29,
place = {United States},
year = {Mon Sep 11 00:00:00 EDT 2023},
month = {Mon Sep 11 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 11, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Permafrost is warming at a global scale
journal, January 2019


Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
journal, November 2022

  • Zona, Donatella; Lafleur, Peter M.; Hufkens, Koen
  • Global Change Biology, Vol. 29, Issue 5
  • DOI: 10.1111/gcb.16487

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Advances in Thermokarst Research: Recent Advances in Research Investigating Thermokarst Processes
journal, April 2013

  • Kokelj, S. V.; Jorgenson, M. T.
  • Permafrost and Periglacial Processes, Vol. 24, Issue 2
  • DOI: 10.1002/ppp.1779

Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra
journal, July 2021


High risk of permafrost thaw
journal, November 2011

  • Schuur, Edward A. G.; Abbott, Benjamin
  • Nature, Vol. 480, Issue 7375
  • DOI: 10.1038/480032a

Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes
journal, July 2013


Circumpolar distribution and carbon storage of thermokarst landscapes
journal, October 2016

  • Olefeldt, D.; Goswami, S.; Grosse, G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13043

Water Tracks Enhance Water Flow Above Permafrost in Upland Arctic Alaska Hillslopes
journal, February 2020

  • Evans, Sarah G.; Godsey, Sarah E.; Rushlow, Caitlin R.
  • Journal of Geophysical Research: Earth Surface, Vol. 125, Issue 2
  • DOI: 10.1029/2019JF005256

Response of CO 2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development
journal, January 2009

  • Vogel, Jason; Schuur, Edward A. G.; Trucco, Christian
  • Journal of Geophysical Research, Vol. 114, Issue G4
  • DOI: 10.1029/2008JG000901

Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic
journal, October 2022


Permafrost Degradation and Ecological Changes Associated with a WarmingClimate in Central Alaska
journal, March 2001

  • Jorgenson, M. Torre; Racine, Charles H.; Walters, James C.
  • Climatic Change, Vol. 48, Issue 4, p. 551-579
  • DOI: 10.1023/A:1005667424292

Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
journal, January 2021

  • Kelsey, Katharine C.; Pedersen, Stine Højlund; Leffler, A. Joshua
  • Global Change Biology, Vol. 27, Issue 8
  • DOI: 10.1111/gcb.15505

Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska
journal, July 2009

  • Osterkamp, T. E.; Jorgenson, M. T.; Schuur, E. A. G.
  • Permafrost and Periglacial Processes, Vol. 20, Issue 3
  • DOI: 10.1002/ppp.656

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw
journal, February 2016

  • Salmon, Verity G.; Soucy, Patrick; Mauritz, Marguerite
  • Global Change Biology, Vol. 22, Issue 5
  • DOI: 10.1111/gcb.13204

Interannual and Seasonal Patterns of Carbon Dioxide, Water, and Energy Fluxes From Ecotonal and Thermokarst-Impacted Ecosystems on Carbon-Rich Permafrost Soils in Northeastern Siberia: Siberian CO 2 , Water, and Energy Fluxes
journal, October 2017

  • Euskirchen, Eugénie S.; Edgar, Colin W.; Syndonia Bret-Harte, M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 10
  • DOI: 10.1002/2017JG004070

Experimental Soil Warming and Permafrost Thaw Increase CH4 Emissions in an Upland Tundra Ecosystem
journal, November 2021

  • Taylor, M. A.; Celis, G.; Ledman, J. D.
  • Journal of Geophysical Research: Biogeosciences, Vol. 126, Issue 11
  • DOI: 10.1029/2021JG006376

Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland
journal, January 2016

  • Lara, Mark J.; Genet, Hélène; McGuire, Anthony D.
  • Global Change Biology, Vol. 22, Issue 2
  • DOI: 10.1111/gcb.13124

Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
journal, February 2021

  • Mishra, Umakant; Hugelius, Gustaf; Shelef, Eitan
  • Science Advances, Vol. 7, Issue 9
  • DOI: 10.1126/sciadv.aaz5236

The Roles of Climate Extremes, Ecological Succession, and Hydrology in Repeated Permafrost Aggradation and Degradation in Fens on the Tanana Flats, Alaska
journal, November 2020

  • Jorgenson, M. Torre; Douglas, Thomas A.; Liljedahl, Anna K.
  • Journal of Geophysical Research: Biogeosciences, Vol. 125, Issue 12
  • DOI: 10.1029/2020JG005824

Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014
journal, December 2021

  • Varner, Ruth K.; Crill, Patrick M.; Frolking, Steve
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 380, Issue 2215
  • DOI: 10.1098/rsta.2021.0022

Permafrost thaw and soil moisture driving CO 2 and CH 4 release from upland tundra
journal, March 2015

  • Natali, Susan M.; Schuur, Edward A. G.; Mauritz, Marguerite
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 3
  • DOI: 10.1002/2014JG002872

Increased wintertime CO 2 loss as a result of sustained tundra warming : Tundra Wintertime CO
journal, February 2016

  • Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 2
  • DOI: 10.1002/2014JG002795

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

Permafrost thaw‐related slope failures in Alaska’s Arctic National Parks, c . 1980–2019
journal, January 2021

  • Swanson, David K.
  • Permafrost and Periglacial Processes, Vol. 32, Issue 3
  • DOI: 10.1002/ppp.2098

Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis
journal, April 2010

  • Romanovsky, Vladimir E.; Smith, Sharon L.; Christiansen, Hanne H.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.689

Tundra Underlain By Thawing Permafrost Persistently Emits Carbon to the Atmosphere Over 15 Years of Measurements
journal, June 2021

  • Schuur, Edward A. G.; Bracho, Rosvel; Celis, Gerardo
  • Journal of Geophysical Research: Biogeosciences, Vol. 126, Issue 6
  • DOI: 10.1029/2020JG006044

Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen
journal, September 2018

  • Hewitt, Rebecca E.; Taylor, D. Lee; Genet, Hélène
  • Journal of Ecology, Vol. 107, Issue 2
  • DOI: 10.1111/1365-2745.13062

Geomorphological and Climatic Drivers of Thermokarst Lake Area Increase Trend (1999–2018) in the Kolyma Lowland Yedoma Region, North-Eastern Siberia
journal, January 2021

  • Veremeeva, Alexandra; Nitze, Ingmar; Günther, Frank
  • Remote Sensing, Vol. 13, Issue 2
  • DOI: 10.3390/rs13020178

Welcome to the Tidyverse
journal, November 2019

  • Wickham, Hadley; Averick, Mara; Bryan, Jennifer
  • Journal of Open Source Software, Vol. 4, Issue 43
  • DOI: 10.21105/joss.01686

Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment
journal, June 2020

  • Rodenhizer, Heidi; Ledman, Justin; Mauritz, Marguerite
  • Journal of Geophysical Research: Biogeosciences, Vol. 125, Issue 6
  • DOI: 10.1029/2019JG005528

Hydrologic Impacts of Thawing Permafrost—A Review
journal, January 2016


Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska
journal, November 2017


Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada
journal, January 2008

  • Lantz, Trevor C.; Kokelj, Steven V.
  • Geophysical Research Letters, Vol. 35, Issue 6
  • DOI: 10.1029/2007GL032433

Balancing the Global Carbon Budget
journal, May 2007


Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network
journal, August 2009

  • Hiemstra, Paul H.; Pebesma, Edzer J.; Twenhöfel, Chris J. W.
  • Computers & Geosciences, Vol. 35, Issue 8
  • DOI: 10.1016/j.cageo.2008.10.011

Nonlinear CO 2 flux response to 7 years of experimentally induced permafrost thaw
journal, March 2017

  • Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo
  • Global Change Biology, Vol. 23, Issue 9
  • DOI: 10.1111/gcb.13661

Permafrost collapse alters soil carbon stocks, respiration, CH 4 , and N 2 O in upland tundra
journal, November 2015

  • Abbott, Benjamin W.; Jones, Jeremy B.
  • Global Change Biology, Vol. 21, Issue 12
  • DOI: 10.1111/gcb.13069

Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
journal, November 2012

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Crummer, Kathryn G.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12058

Impact of unusually wet permafrost soil on understory vegetation and CO2 exchange in a larch forest in eastern Siberia
journal, February 2019


Carbon release through abrupt permafrost thaw
journal, February 2020


Net ecosystem exchange of CO 2 with rapidly changing high Arctic landscapes
journal, December 2015

  • Emmerton, Craig A.; St. Louis, Vincent L.; Humphreys, Elyn R.
  • Global Change Biology, Vol. 22, Issue 3
  • DOI: 10.1111/gcb.13064

Abrupt permafrost thaw accelerates carbon dioxide and methane release at a tussock tundra site
journal, September 2022


Permafrost carbon feedbacks threaten global climate goals
journal, May 2021

  • Natali, Susan M.; Holdren, John P.; Rogers, Brendan M.
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 21
  • DOI: 10.1073/pnas.2100163118

Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services
journal, November 2018


Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions
journal, May 2013

  • Subin, Zachary M.; Koven, Charles D.; Riley, William J.
  • Journal of Climate, Vol. 26, Issue 10
  • DOI: 10.1175/JCLI-D-12-00305.1

Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic
journal, June 2019

  • Farquharson, Louise M.; Romanovsky, Vladimir E.; Cable, William L.
  • Geophysical Research Letters, Vol. 46, Issue 12
  • DOI: 10.1029/2019GL082187

The Influence of Shallow Taliks on Permafrost Thaw and Active Layer Dynamics in Subarctic Canada
journal, February 2018

  • Connon, Ryan; Devoie, Élise; Hayashi, Masaki
  • Journal of Geophysical Research: Earth Surface, Vol. 123, Issue 2
  • DOI: 10.1002/2017JF004469