DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial thermal transport in spin caloritronic material systems

Abstract

Interfaces often govern the thermal performance of nanoscale devices and nanostructured materials. As a result, accurate knowledge of thermal interface conductance is necessary to model the temperature response of nanoscale devices or nanostructured materials to heating. Here, we report the thermal boundary conductance between metals and insulators that are commonly used in spin-caloritronic experiments. We use time-domain thermoreflectance to measure the interface conductance between metals such as Au, Pt, Ta, Cu, and Al with garnet and oxide substrates, e.g., NiO, yttrium iron garnet (YIG), thulium iron garnet (TmIG), Cr2O3, and sapphire. We find that, at room temperature, the interface conductance in these types of material systems range from 50 to 300 MW m–2 K–1. Furthermore, we also measure the interface conductance between Pt and YIG at temperatures between 80 and 350 K. At room temperature, the interface conductance of Pt/YIG is 170 MW m–2 K–1 and the Kapitza length is ~40 nm. A Kapitza length of 40 nm means that, in the presence of a steady-state heat current, the temperature drop at the Pt/YIG interface is equal to the temperature drop across a 40-nm-thick layer of YIG. At 80 K, the interface conductance of Pt/YIG is 60 MW m–2 K–1,more » corresponding to a Kapitza length of ~300 nm.« less

Authors:
 [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Univ. of California, Riverside, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Riverside, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Army Research Laboratory (USARL); US Army Research Office (ARO); National Science Foundation (NSF)
OSTI Identifier:
1980333
Grant/Contract Number:  
FG02-07ER46351; W911NF-18-1-0364; 1750786
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 11; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Materials Science; Thermal conductivity

Citation Formats

Angeles, Frank, Sun, Qiyang, Ortiz, Victor H., Shi, Jing, Li, Chen, and Wilson, Richard B. Interfacial thermal transport in spin caloritronic material systems. United States: N. p., 2021. Web. doi:10.1103/physrevmaterials.5.114403.
Angeles, Frank, Sun, Qiyang, Ortiz, Victor H., Shi, Jing, Li, Chen, & Wilson, Richard B. Interfacial thermal transport in spin caloritronic material systems. United States. https://doi.org/10.1103/physrevmaterials.5.114403
Angeles, Frank, Sun, Qiyang, Ortiz, Victor H., Shi, Jing, Li, Chen, and Wilson, Richard B. Thu . "Interfacial thermal transport in spin caloritronic material systems". United States. https://doi.org/10.1103/physrevmaterials.5.114403. https://www.osti.gov/servlets/purl/1980333.
@article{osti_1980333,
title = {Interfacial thermal transport in spin caloritronic material systems},
author = {Angeles, Frank and Sun, Qiyang and Ortiz, Victor H. and Shi, Jing and Li, Chen and Wilson, Richard B.},
abstractNote = {Interfaces often govern the thermal performance of nanoscale devices and nanostructured materials. As a result, accurate knowledge of thermal interface conductance is necessary to model the temperature response of nanoscale devices or nanostructured materials to heating. Here, we report the thermal boundary conductance between metals and insulators that are commonly used in spin-caloritronic experiments. We use time-domain thermoreflectance to measure the interface conductance between metals such as Au, Pt, Ta, Cu, and Al with garnet and oxide substrates, e.g., NiO, yttrium iron garnet (YIG), thulium iron garnet (TmIG), Cr2O3, and sapphire. We find that, at room temperature, the interface conductance in these types of material systems range from 50 to 300 MW m–2 K–1. Furthermore, we also measure the interface conductance between Pt and YIG at temperatures between 80 and 350 K. At room temperature, the interface conductance of Pt/YIG is 170 MW m–2 K–1 and the Kapitza length is ~40 nm. A Kapitza length of 40 nm means that, in the presence of a steady-state heat current, the temperature drop at the Pt/YIG interface is equal to the temperature drop across a 40-nm-thick layer of YIG. At 80 K, the interface conductance of Pt/YIG is 60 MW m–2 K–1, corresponding to a Kapitza length of ~300 nm.},
doi = {10.1103/physrevmaterials.5.114403},
journal = {Physical Review Materials},
number = 11,
volume = 5,
place = {United States},
year = {Thu Nov 11 00:00:00 EST 2021},
month = {Thu Nov 11 00:00:00 EST 2021}
}

Works referenced in this record:

Recent Trends in Microwave Magnetism and Superconductivity
journal, November 2019

  • Prokopenko, O. V.; Bozhko, D. A.; Tyberkevych, V. S.
  • Ukrainian Journal of Physics, Vol. 64, Issue 10
  • DOI: 10.15407/ujpe64.10.888

Experimental Validation of the Interfacial Form of the Wiedemann-Franz Law
journal, June 2012


First-principles study of exchange interactions of yttrium iron garnet
journal, January 2017


Thermal Boundary Conductance: A Materials Science Perspective
journal, July 2016


Role of interface disorder on thermal boundary conductance using a virtual crystal approach
journal, January 2007

  • Beechem, Thomas; Graham, Samuel; Hopkins, Patrick
  • Applied Physics Letters, Vol. 90, Issue 5
  • DOI: 10.1063/1.2437685

High sensitivity pump–probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator
journal, February 2020

  • Gomez, Michael J.; Liu, Kexin; Lee, Jonathan G.
  • Review of Scientific Instruments, Vol. 91, Issue 2
  • DOI: 10.1063/1.5126121

Analysis of thermoreflectance signals and characterization of thermal conductivity of metal thin films
journal, December 2009

  • Miyake, Syugo; Kita, Takashi; Miyake, Aya
  • Review of Scientific Instruments, Vol. 80, Issue 12
  • DOI: 10.1063/1.3265994

Towards a coherent database of thermal boundary conductance at metal/dielectric interfaces
journal, March 2019

  • Blank, Maïté; Weber, Ludger
  • Journal of Applied Physics, Vol. 125, Issue 9
  • DOI: 10.1063/1.5085176

A simplified method for calculating the debye temperature from elastic constants
journal, July 1963


Two-channel model for nonequilibrium thermal transport in pump-probe experiments
journal, October 2013


Anisotropic Debye model for the thermal boundary conductance
journal, March 2013


Effects of bulk and interfacial anharmonicity on thermal conductance at solid/solid interfaces
journal, June 2017

  • Le, Nam Q.; Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh
  • Physical Review B, Vol. 95, Issue 24
  • DOI: 10.1103/PhysRevB.95.245417

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures
journal, June 2011

  • Hsieh, Wen-Pin; Cahill, David G.
  • Journal of Applied Physics, Vol. 109, Issue 11
  • DOI: 10.1063/1.3592882

Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties
journal, January 2012

  • Wilson, R. B.; Apgar, Brent A.; Martin, Lane W.
  • Optics Express, Vol. 20, Issue 27
  • DOI: 10.1364/OE.20.028829

Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations
journal, February 2017


Thermal conductance of metal-metal interfaces
journal, December 2005


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters
journal, November 2008

  • Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3020759

Thermal conductance of epitaxial interfaces
journal, February 2003


Thermal conductance of interfaces between highly dissimilar materials
journal, April 2006


Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
journal, March 2005

  • Stevens, Robert J.; Smith, Andrew N.; Norris, Pamela M.
  • Journal of Heat Transfer, Vol. 127, Issue 3
  • DOI: 10.1115/1.1857944

Probing the Magnetic Ordering of Antiferromagnetic MnPS 3 by Raman Spectroscopy
journal, May 2019

  • Sun, Yu-Jia; Tan, Qing-Hai; Liu, Xue-Lu
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 11
  • DOI: 10.1021/acs.jpclett.9b00758

Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K
journal, December 1993


Interpreting picosecond acoustics in the case of low interface stiffness
journal, November 2012

  • Hohensee, Gregory T.; Hsieh, Wen-Pin; Losego, Mark D.
  • Review of Scientific Instruments, Vol. 83, Issue 11
  • DOI: 10.1063/1.4766957

Concomitant enhancement of the longitudinal spin Seebeck effect and the thermal conductivity in a Pt/YIG/Pt system at low temperatures
journal, May 2017


The Heat Capacities and Entropies of Aluminum and Copper from 15 to 300°K.
journal, July 1941

  • Giauque, W. F.; Meads, P. F.
  • Journal of the American Chemical Society, Vol. 63, Issue 7
  • DOI: 10.1021/ja01852a027

Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces
journal, March 2014

  • Monachon, Christian; Schusteritsch, Georg; Kaxiras, Efthimios
  • Journal of Applied Physics, Vol. 115, Issue 12
  • DOI: 10.1063/1.4869668

Chemical Reactions Impede Thermal Transport Across Metal/β-Ga 2 O 3 Interfaces
journal, October 2019


Magnon thermal mean free path in yttrium iron garnet
journal, August 2014


Parametric dependence of hot electron relaxation timescales on electron-electron and electron-phonon interaction strengths
journal, October 2020


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Thermal constants for Ni, NiO, MgO, MnO and CoO at low temperatures
journal, May 1993


Nonequilibrium heat transport in Pt and Ru probed by an ultrathin Co thermometer
journal, February 2020


Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces
journal, August 2010


Interfacial thermal conductance in spun-cast polymer films and polymer brushes
journal, July 2010

  • Losego, Mark D.; Moh, Lionel; Arpin, Kevin A.
  • Applied Physics Letters, Vol. 97, Issue 1
  • DOI: 10.1063/1.3458802

First principles phonon calculations in materials science
journal, November 2015


Thermal conductance of metal–diamond interfaces at high pressure
journal, March 2015

  • Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7578

Spin caloritronics
journal, January 2014

  • Boona, Stephen R.; Myers, Roberto C.; Heremans, Joseph P.
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43299h

Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings
journal, June 1998

  • Cahill, David G.; Lee, S. -M.; Selinder, Torbjörn I.
  • Journal of Applied Physics, Vol. 83, Issue 11
  • DOI: 10.1063/1.367500

Specific heat in Erbium and Yttrium Iron garnet crystals
journal, March 1981

  • Guillot, M.; Tch�ou, F.; Marchand, A.
  • Zeitschrift f�r Physik B Condensed Matter, Vol. 44, Issue 1-2
  • DOI: 10.1007/BF01292652

Thermal conductance of strongly bonded metal-oxide interfaces
journal, March 2015


The Ultrafast Laser Pump-Probe Technique for Thermal Characterization of Materials With Micro/Nanostructures
journal, April 2017

  • Zhu, Jie; Wu, Xuewang; Lattery, Dustin M.
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 21, Issue 3
  • DOI: 10.1080/15567265.2017.1313343

Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures
journal, September 2013


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Effects of chemical bonding on heat transport across interfaces
journal, April 2012

  • Losego, Mark D.; Grady, Martha E.; Sottos, Nancy R.
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3303

Vibrational Properties of Metal Phosphorus Trichalcogenides from First-Principles Calculations
journal, November 2017

  • Hashemi, Arsalan; Komsa, Hannu-Pekka; Puska, Martti
  • The Journal of Physical Chemistry C, Vol. 121, Issue 48
  • DOI: 10.1021/acs.jpcc.7b09634

Solution-Processed Ferrimagnetic Insulator Thin Film for the Microelectronic Spin Seebeck Energy Conversion
journal, August 2018

  • Oh, Inseon; Park, Jungmin; Jo, Junhyeon
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 34
  • DOI: 10.1021/acsami.8b08749

Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation
journal, July 2018

  • Maehrlein, Sebastian F.; Radu, Ilie; Maldonado, Pablo
  • Science Advances, Vol. 4, Issue 7
  • DOI: 10.1126/sciadv.aar5164

The Thermal Conductivity of Monocrystalline Gallium Garnets Doped with Rare-Earth Elements and Chromium in the Range 6–300 K
journal, January 1992

  • Sirota, N. N.; Popv, P. A.; Ivanov, I. A.
  • Crystal Research and Technology, Vol. 27, Issue 4
  • DOI: 10.1002/crat.2170270421

The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet
journal, July 1993