DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shadow energy functionals and potentials in Born–Oppenheimer molecular dynamics

Abstract

In Born–Oppenheimer molecular dynamics (BOMD) simulations based on the density functional theory (DFT), the potential energy and the interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization procedure, which, in practice, never is fully converged. The calculated energies and forces are, therefore, only approximate, which may lead to an unphysical energy drift and instabilities. Here, we discuss an alternative shadow BOMD approach that is based on backward error analysis. Instead of calculating approximate solutions for an underlying exact regular Born–Oppenheimer potential, we do the opposite. Instead, we calculate the exact electron density, energies, and forces, but for an underlying approximate shadow Born–Oppenheimer potential energy surface. In this way, the calculated forces are conservative with respect to the approximate shadow potential and generate accurate molecular trajectories with long-term energy stabilities. We show how such shadow Born–Oppenheimer potentials can be constructed at different levels of accuracy as a function of the integration time step, δt, from the constrained minimization of a sequence of systematically improvable, but approximate, shadow energy density functionals. For each energy functional, there is a corresponding ground state Born–Oppenheimer potential. These pairs of shadow energy functionals and potentials aremore » higher-level generalizations of the original “zeroth-level” shadow energy functionals and potentials used in extended Lagrangian BOMD [Niklasson, Eur. Phys. J. B 94, 164 (2021)]. The proposed shadow energy functionals and potentials are useful only within this extended dynamical framework, where also the electronic degrees of freedom are propagated as dynamical field variables together with the atomic positions and velocities. The theory is quite general and can be applied to MD simulations using approximate DFT, Hartree–Fock, or semi-empirical methods, as well as to coarse-grained flexible charge models.« less

Authors:
ORCiD logo [1];  [1]
  1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1970645
Grant/Contract Number:  
LANLE8AN
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Name: Journal of Chemical Physics Journal Volume: 158 Journal Issue: 15; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Niklasson, Anders M. N., and Negre, Christian F. A. Shadow energy functionals and potentials in Born–Oppenheimer molecular dynamics. United States: N. p., 2023. Web. doi:10.1063/5.0146431.
Niklasson, Anders M. N., & Negre, Christian F. A. Shadow energy functionals and potentials in Born–Oppenheimer molecular dynamics. United States. https://doi.org/10.1063/5.0146431
Niklasson, Anders M. N., and Negre, Christian F. A. Fri . "Shadow energy functionals and potentials in Born–Oppenheimer molecular dynamics". United States. https://doi.org/10.1063/5.0146431.
@article{osti_1970645,
title = {Shadow energy functionals and potentials in Born–Oppenheimer molecular dynamics},
author = {Niklasson, Anders M. N. and Negre, Christian F. A.},
abstractNote = {In Born–Oppenheimer molecular dynamics (BOMD) simulations based on the density functional theory (DFT), the potential energy and the interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization procedure, which, in practice, never is fully converged. The calculated energies and forces are, therefore, only approximate, which may lead to an unphysical energy drift and instabilities. Here, we discuss an alternative shadow BOMD approach that is based on backward error analysis. Instead of calculating approximate solutions for an underlying exact regular Born–Oppenheimer potential, we do the opposite. Instead, we calculate the exact electron density, energies, and forces, but for an underlying approximate shadow Born–Oppenheimer potential energy surface. In this way, the calculated forces are conservative with respect to the approximate shadow potential and generate accurate molecular trajectories with long-term energy stabilities. We show how such shadow Born–Oppenheimer potentials can be constructed at different levels of accuracy as a function of the integration time step, δt, from the constrained minimization of a sequence of systematically improvable, but approximate, shadow energy density functionals. For each energy functional, there is a corresponding ground state Born–Oppenheimer potential. These pairs of shadow energy functionals and potentials are higher-level generalizations of the original “zeroth-level” shadow energy functionals and potentials used in extended Lagrangian BOMD [Niklasson, Eur. Phys. J. B 94, 164 (2021)]. The proposed shadow energy functionals and potentials are useful only within this extended dynamical framework, where also the electronic degrees of freedom are propagated as dynamical field variables together with the atomic positions and velocities. The theory is quite general and can be applied to MD simulations using approximate DFT, Hartree–Fock, or semi-empirical methods, as well as to coarse-grained flexible charge models.},
doi = {10.1063/5.0146431},
journal = {Journal of Chemical Physics},
number = 15,
volume = 158,
place = {United States},
year = {Fri Apr 21 00:00:00 EDT 2023},
month = {Fri Apr 21 00:00:00 EDT 2023}
}

Works referenced in this record:

Time-reversible ab initio molecular dynamics
journal, April 2007

  • Niklasson, Anders M. N.; Tymczak, C. J.; Challacombe, Matt
  • The Journal of Chemical Physics, Vol. 126, Issue 14
  • DOI: 10.1063/1.2715556

Energy conserving, linear scaling Born-Oppenheimer molecular dynamics
journal, October 2012

  • Cawkwell, M. J.; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 137, Issue 13
  • DOI: 10.1063/1.4755991

Exact Conditions in Finite-Temperature Density-Functional Theory
journal, October 2011


Thermal Density Functional Theory in Context
book, January 2014

  • Pribram-Jones, Aurora; Pittalis, Stefano; Gross, E. K. U.
  • Lecture Notes in Computational Science and Engineering
  • DOI: 10.1007/978-3-319-04912-0_2

Density-functional tight-binding for beginners
journal, November 2009


Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Efficient and Accurate Born–Oppenheimer Molecular Dynamics for Large Molecular Systems
journal, October 2017

  • Peters, Laurens D. M.; Kussmann, Jörg; Ochsenfeld, Christian
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00937

Next generation extended Lagrangian first principles molecular dynamics
journal, August 2017

  • Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 147, Issue 5
  • DOI: 10.1063/1.4985893

Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids
journal, March 2017

  • Naserifar, Saber; Brooks, Daniel J.; Goddard, William A.
  • The Journal of Chemical Physics, Vol. 146, Issue 12
  • DOI: 10.1063/1.4978891

Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation
journal, August 2021


ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order
journal, February 2013

  • Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.
  • The Journal of Chemical Physics, Vol. 138, Issue 7
  • DOI: 10.1063/1.4791569

Inertial extended-Lagrangian scheme for solving charge equilibration models
journal, January 2019

  • Leven, Itai; Head-Gordon, Teresa
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 34
  • DOI: 10.1039/c9cp02979f

Analytic hyperpolarizability and polarizability derivative with fractional occupation numbers for large extended systems
journal, February 2017

  • Nishimoto, Yoshio
  • The Journal of Chemical Physics, Vol. 146, Issue 8
  • DOI: 10.1063/1.4976551

Extended Lagrangian Born–Oppenheimer molecular dynamics: from density functional theory to charge relaxation models
journal, August 2021


Fock matrix dynamics
journal, March 2004


Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
journal, October 2014

  • Niklasson, Anders M. N.; Cawkwell, Marc J.
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898803

Geometric integration in Born-Oppenheimer molecular dynamics
journal, December 2011

  • Odell, Anders; Delin, Anna; Johansson, Börje
  • The Journal of Chemical Physics, Vol. 135, Issue 22
  • DOI: 10.1063/1.3660689

Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+ Atoms
journal, November 2014

  • Arita, Michiaki; Bowler, David R.; Miyazaki, Tsuyoshi
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 12
  • DOI: 10.1021/ct500847y

Car-Parrinello molecular dynamics: Car-Parrinello molecular dynamics
journal, September 2011

  • Hutter, Jürg
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 4
  • DOI: 10.1002/wcms.90

Extended tight‐binding quantum chemistry methods
journal, August 2020

  • Bannwarth, Christoph; Caldeweyher, Eike; Ehlert, Sebastian
  • WIREs Computational Molecular Science, Vol. 11, Issue 2
  • DOI: 10.1002/wcms.1493

Hartree-Fock Theory with Nonorthogonal Basis Functions
journal, June 1959


N-particle dynamics of polarizable Stockmayer-type molecules
journal, August 1977


Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model
journal, June 1985

  • Dewar, Michael J. S.; Zoebisch, Eve G.; Healy, Eamonn F.
  • Journal of the American Chemical Society, Vol. 107, Issue 13
  • DOI: 10.1021/ja00299a024

Electronegativity-equalization method for the calculation of atomic charges in molecules
journal, July 1986

  • Mortier, Wilfried J.; Ghosh, Swapan K.; Shankar, S.
  • Journal of the American Chemical Society, Vol. 108, Issue 15
  • DOI: 10.1021/ja00275a013

Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen
journal, November 2017

  • Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 12
  • DOI: 10.1021/acs.jctc.7b00762

Accelerated, energy-conserving Born–Oppenheimer molecular dynamics via Fock matrix extrapolation
journal, January 2005

  • Herbert, John M.; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18
  • DOI: 10.1039/b509494a

Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm
journal, August 2003

  • Lamoureux, Guillaume; Roux, Benoı̂t
  • The Journal of Chemical Physics, Vol. 119, Issue 6
  • DOI: 10.1063/1.1589749

Shadow Hamiltonian in classical NVE molecular dynamics simulations: A path to long time stability
journal, January 2020

  • Hammonds, K. D.; Heyes, D. M.
  • The Journal of Chemical Physics, Vol. 152, Issue 2
  • DOI: 10.1063/1.5139708

Density-Matrix Based Extended Lagrangian Born–Oppenheimer Molecular Dynamics
journal, May 2020


Ab initio molecular dynamics: basic concepts, current trends and novel applications
journal, December 2002


Shadow Lagrangian dynamics for superfluidity
journal, January 2021

  • Henning, Patrick; Niklasson, Anders M. N.
  • Kinetic & Related Models, Vol. 14, Issue 2
  • DOI: 10.3934/krm.2021006

Shadow Hamiltonian in classical NVE molecular dynamics simulations involving Coulomb interactions
journal, May 2021

  • Hammonds, K. D.; Heyes, D. M.
  • The Journal of Chemical Physics, Vol. 154, Issue 17
  • DOI: 10.1063/5.0048194

GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions
journal, January 2019

  • Bannwarth, Christoph; Ehlert, Sebastian; Grimme, Stefan
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 3
  • DOI: 10.1021/acs.jctc.8b01176

Molecular dynamics without effective potentials via the Car-Parrinello approach
journal, August 1990


A polarizable model for water using distributed charge sites
journal, December 1988

  • Sprik, Michiel; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 89, Issue 12
  • DOI: 10.1063/1.455722

Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation
journal, June 2009

  • Niklasson, Anders M. N.; Steneteg, Peter; Odell, Anders
  • The Journal of Chemical Physics, Vol. 130, Issue 21
  • DOI: 10.1063/1.3148075

Visible light enhanced gas sensing of CdSe nanoribbons of ethanol
journal, January 2014

  • Lin, Zhangqing; Liao, Fan; Zhu, Lili
  • CrystEngComm, Vol. 16, Issue 20
  • DOI: 10.1039/c3ce42577k

Energy conservation in molecular dynamics simulations of classical systems
journal, June 2012

  • Toxvaerd, Søren; Heilmann, Ole J.; Dyre, Jeppe C.
  • The Journal of Chemical Physics, Vol. 136, Issue 22
  • DOI: 10.1063/1.4726728

A chemical potential equalization method for molecular simulations
journal, January 1996

  • York, Darrin M.; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 104, Issue 1
  • DOI: 10.1063/1.470886

Canonical density matrix perturbation theory
journal, December 2015

  • Niklasson, Anders M. N.; Cawkwell, M. J.; Rubensson, Emanuel H.
  • Physical Review E, Vol. 92, Issue 6
  • DOI: 10.1103/physreve.92.063301

Classical polarizable force fields parametrized from ab initio calculations
journal, July 2002

  • Tabacchi, Gloria; Mundy, Christopher J.; Hutter, Jürg
  • The Journal of Chemical Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.1487822

Density Functional Theory
book, January 2011


Zur Quantentheorie der Molekeln
journal, January 1927


Improved cutoff functions for short-range potentials and the Wolf summation
journal, July 2022


Extended Lagrangian Born–Oppenheimer molecular dynamics using a Krylov subspace approximation
journal, March 2020

  • Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 152, Issue 10
  • DOI: 10.1063/1.5143270

Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections
journal, January 2019

  • Dral, Pavlo O.; Wu, Xin; Thiel, Walter
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 3
  • DOI: 10.1021/acs.jctc.8b01265

Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method
journal, July 2011

  • Zheng, Guishan; Niklasson, Anders M. N.; Karplus, Martin
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3605303

DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
journal, March 2020

  • Hourahine, B.; Aradi, B.; Blum, V.
  • The Journal of Chemical Physics, Vol. 152, Issue 12
  • DOI: 10.1063/1.5143190

DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB)
journal, March 2011

  • Gaus, Michael; Cui, Qiang; Elstner, Marcus
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 4
  • DOI: 10.1021/ct100684s

Graph-based quantum response theory and shadow Born–Oppenheimer molecular dynamics
journal, February 2023

  • Negre, Christian F. A.; Wall, Michael E.; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 158, Issue 7
  • DOI: 10.1063/5.0137119

Higher-order symplectic integration in Born–Oppenheimer molecular dynamics
journal, December 2009

  • Odell, Anders; Delin, Anna; Johansson, Börje
  • The Journal of Chemical Physics, Vol. 131, Issue 24
  • DOI: 10.1063/1.3268338

Construction of higher order symplectic integrators
journal, November 1990


Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
journal, June 2015

  • Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00324

First principles molecular dynamics without self-consistent field optimization
journal, January 2014

  • Souvatzis, Petros; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 140, Issue 4
  • DOI: 10.1063/1.4862907

Wave function extended Lagrangian Born-Oppenheimer molecular dynamics
journal, August 2010


NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations
journal, July 2020

  • Malone, Walter; Nebgen, Benjamin; White, Alexander
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 9
  • DOI: 10.1021/acs.jctc.0c00248

Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch
journal, July 2020

  • Zhou, Guoqing; Nebgen, Ben; Lubbers, Nicholas
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 8
  • DOI: 10.1021/acs.jctc.0c00243

Stability of the thermal Hartree-Fock approximation
journal, January 1963