DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays

Abstract

Semiconductor photocatalysis has received increasing attention because of its potential to address problems related to the energy crisis and environmental issues. However, conventional semiconductor photocatalysts, such as TiO2 and ZnO, can only be activated by ultraviolet light due to their wide band gap. To extend the light absorption into the visible range, the localized surface plasmon resonance (LSPR) effect of noble metal nanoparticles (NPs) has been widely used. Noble metal NPs can couple incident visible light energy to strong LSPR, and the nonradiative decay of LSPR generates nonthermal hot carriers that can be injected into adjacent semiconductor material to enhance its photocatalytic activity. Here we demonstrate that nanoimprint-defined gap plasmonic nanofinger arrays can function as visible light-driven plasmonic photocatalysts. The sub-5 nm gaps between pairs of collapsed nanofingers can support ultra-strong plasmon resonance and thus boost the population of hot carriers. The semiconductor material is exactly placed at the hot spots, providing an efficient pathway for hot carrier injection from plasmonic metal to catalytic materials. This nanostructure thus exhibits high plasmon-enhanced photocatalytic activity under visible light. The hot carrier injection mechanism of this platform was systematically investigated. The plasmonic enhancement factor was calculated using the finite-difference time-domain (FDTD) method andmore » was consistent with the measured improvement of the photocatalytic activity. This platform, benefiting from the precise controllable geometry, provides a deeper understanding of the mechanism of plasmonic photocatalysis.« less

Authors:
ORCiD logo; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1894522
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Nanomaterials
Additional Journal Information:
Journal Name: Nanomaterials Journal Volume: 12 Journal Issue: 21; Journal ID: ISSN 2079-4991
Publisher:
MDPI AG
Country of Publication:
Switzerland
Language:
English

Citation Formats

Wang, Yunxiang, Chen, Buyun, Meng, Deming, Song, Boxiang, Liu, Zerui, Hu, Pan, Yang, Hao, Ou, Tse-Hsien, Liu, Fanxin, Pi, Halton, Pi, Irene, Pi, Isleen, and Wu, Wei. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays. Switzerland: N. p., 2022. Web. doi:10.3390/nano12213730.
Wang, Yunxiang, Chen, Buyun, Meng, Deming, Song, Boxiang, Liu, Zerui, Hu, Pan, Yang, Hao, Ou, Tse-Hsien, Liu, Fanxin, Pi, Halton, Pi, Irene, Pi, Isleen, & Wu, Wei. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays. Switzerland. https://doi.org/10.3390/nano12213730
Wang, Yunxiang, Chen, Buyun, Meng, Deming, Song, Boxiang, Liu, Zerui, Hu, Pan, Yang, Hao, Ou, Tse-Hsien, Liu, Fanxin, Pi, Halton, Pi, Irene, Pi, Isleen, and Wu, Wei. Mon . "Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays". Switzerland. https://doi.org/10.3390/nano12213730.
@article{osti_1894522,
title = {Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays},
author = {Wang, Yunxiang and Chen, Buyun and Meng, Deming and Song, Boxiang and Liu, Zerui and Hu, Pan and Yang, Hao and Ou, Tse-Hsien and Liu, Fanxin and Pi, Halton and Pi, Irene and Pi, Isleen and Wu, Wei},
abstractNote = {Semiconductor photocatalysis has received increasing attention because of its potential to address problems related to the energy crisis and environmental issues. However, conventional semiconductor photocatalysts, such as TiO2 and ZnO, can only be activated by ultraviolet light due to their wide band gap. To extend the light absorption into the visible range, the localized surface plasmon resonance (LSPR) effect of noble metal nanoparticles (NPs) has been widely used. Noble metal NPs can couple incident visible light energy to strong LSPR, and the nonradiative decay of LSPR generates nonthermal hot carriers that can be injected into adjacent semiconductor material to enhance its photocatalytic activity. Here we demonstrate that nanoimprint-defined gap plasmonic nanofinger arrays can function as visible light-driven plasmonic photocatalysts. The sub-5 nm gaps between pairs of collapsed nanofingers can support ultra-strong plasmon resonance and thus boost the population of hot carriers. The semiconductor material is exactly placed at the hot spots, providing an efficient pathway for hot carrier injection from plasmonic metal to catalytic materials. This nanostructure thus exhibits high plasmon-enhanced photocatalytic activity under visible light. The hot carrier injection mechanism of this platform was systematically investigated. The plasmonic enhancement factor was calculated using the finite-difference time-domain (FDTD) method and was consistent with the measured improvement of the photocatalytic activity. This platform, benefiting from the precise controllable geometry, provides a deeper understanding of the mechanism of plasmonic photocatalysis.},
doi = {10.3390/nano12213730},
journal = {Nanomaterials},
number = 21,
volume = 12,
place = {Switzerland},
year = {Mon Oct 24 00:00:00 EDT 2022},
month = {Mon Oct 24 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3390/nano12213730

Save / Share:

Works referenced in this record:

Robust Subnanometric Plasmon Ruler by Rescaling of the Nonlocal Optical Response
journal, June 2013


Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting
journal, August 2015


Surface-enhanced Raman spectroscopy: nonlocal limitations
journal, January 2012


Theoretical predictions for hot-carrier generation from surface plasmon decay
journal, December 2014

  • Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6788

Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor
journal, July 2014

  • Sil, Devika; Gilroy, Kyle D.; Niaux, Aurelia
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn500765t

Enhanced Photocatalytic Degradation of Methyl Orange by Au/TiO2Nanoparticles under Neutral and Acidic Solutions
journal, February 2018


Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides
journal, October 2008

  • García de Abajo, F. Javier
  • The Journal of Physical Chemistry C, Vol. 112, Issue 46
  • DOI: 10.1021/jp807345h

Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing
journal, July 2018


Bridging quantum and classical plasmonics with a quantum-corrected model
journal, January 2012

  • Esteban, Ruben; Borisov, Andrei G.; Nordlander, Peter
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1806

Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules
journal, July 2013

  • Govorov, Alexander O.; Zhang, Hui; Gun’ko, Yurii K.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 32
  • DOI: 10.1021/jp405430m

Study of Molecular Trapping Inside Gold Nanofinger Arrays on Surface-Enhanced Raman Substrates
journal, June 2011

  • Kim, Ansoon; Ou, Fung Suong; Ohlberg, Douglas A. A.
  • Journal of the American Chemical Society, Vol. 133, Issue 21
  • DOI: 10.1021/ja200247x

Plasmonic hot electron transport drives nano-localized chemistry
journal, March 2017

  • Cortés, Emiliano; Xie, Wei; Cambiasso, Javier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14880

Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers
journal, May 2017


Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures
journal, January 2021


Optical response in subnanometer gaps due to nonlocal response and quantum tunneling
journal, December 2012

  • Dong, Tianyu; Ma, Xikui; Mittra, Raj
  • Applied Physics Letters, Vol. 101, Issue 23
  • DOI: 10.1063/1.4769348

Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas
journal, December 2015


Quantum plasmonics
journal, June 2013

  • Tame, M. S.; McEnery, K. R.; Özdemir, Ş. K.
  • Nature Physics, Vol. 9, Issue 6
  • DOI: 10.1038/nphys2615

Au/TiO 2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity
journal, December 2013

  • Bian, Zhenfeng; Tachikawa, Takashi; Zhang, Peng
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja410994f

Fabrication of gold nanoantennas on SiO2/TiO2 core/shell beads to study photon-driven surface reactions
journal, August 2015

  • Salmistraro, Marco; Sassolini, Simone; Weber-Bargioni, Alexander
  • Microelectronic Engineering, Vol. 143
  • DOI: 10.1016/j.mee.2015.03.056

Plasmon Hybridization in Nanoparticle Dimers
journal, May 2004

  • Nordlander, P.; Oubre, C.; Prodan, E.
  • Nano Letters, Vol. 4, Issue 5
  • DOI: 10.1021/nl049681c

Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers
journal, January 2006

  • Romero, Isabel; Aizpurua, Javier; Bryant, Garnett W.
  • Optics Express, Vol. 14, Issue 21
  • DOI: 10.1364/OE.14.009988

Optical Properties of Nanowire Dimers with a Spatially Nonlocal Dielectric Function
journal, September 2010

  • McMahon, Jeffrey M.; Gray, Stephen K.; Schatz, George C.
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl101606j

Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting
journal, November 2020

  • Abed, Jehad; Rajput, Nitul S.; Moutaouakil, Amine El
  • Nanomaterials, Vol. 10, Issue 11
  • DOI: 10.3390/nano10112260

Probing Long-Lived Plasmonic-Generated Charges in TiO 2 /Au by High-Resolution X-ray Absorption Spectroscopy
journal, March 2015

  • Amidani, Lucia; Naldoni, Alberto; Malvestuto, Marco
  • Angewandte Chemie International Edition, Vol. 54, Issue 18
  • DOI: 10.1002/anie.201412030

Advances in Photocatalytic CO2 Reduction with Water: A Review
journal, June 2017

  • Nahar, Samsun; Zain, M.; Kadhum, Abdul
  • Materials, Vol. 10, Issue 6
  • DOI: 10.3390/ma10060629

Environmental Applications of Semiconductor Photocatalysis
journal, January 1995

  • Hoffmann, Michael R.; Martin, Scot T.; Choi, Wonyong.
  • Chemical Reviews, Vol. 95, Issue 1
  • DOI: 10.1021/cr00033a004

On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation
journal, July 2007

  • Jain, Prashant K.; Huang, Wenyu; El-Sayed, Mostafa A.
  • Nano Letters, Vol. 7, Issue 7
  • DOI: 10.1021/nl071008a

Prolonged Hot Electron Dynamics in Plasmonic-Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis
journal, June 2014

  • DuChene, Joseph S.; Sweeny, Brendan C.; Johnston-Peck, Aaron C.
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201404259

Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination
journal, March 2011

  • Liu, Zuwei; Hou, Wenbo; Pavaskar, Prathamesh
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl104005n

Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers
journal, January 2013

  • Teperik, Tatiana V.; Nordlander, Peter; Aizpurua, Javier
  • Optics Express, Vol. 21, Issue 22
  • DOI: 10.1364/OE.21.027306

Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States
journal, November 2016


Au–TiO2-Loaded Cubic g-C3N4 Nanohybrids for Photocatalytic and Volatile Organic Amine Sensing Applications
journal, September 2018

  • Malik, Ritu; Tomer, Vijay K.; Joshi, Nirav
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 40
  • DOI: 10.1021/acsami.8b08091

4‐Aminothiophenol Photodimerization Without Plasmons**
journal, May 2022


Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO 2 , and TiO 2 Films Used in Dye-Sensitized Solar Cells
journal, May 2011

  • Tiwana, Priti; Docampo, Pablo; Johnston, Michael B.
  • ACS Nano, Vol. 5, Issue 6
  • DOI: 10.1021/nn201243y

Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
journal, March 2020


Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity
journal, January 2011

  • Lin, Jianjian; Shen, Jianxing; Wang, Ruijun
  • Journal of Materials Chemistry, Vol. 21, Issue 13
  • DOI: 10.1039/c0jm04131a

Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer
journal, February 2012

  • Marinica, D. C.; Kazansky, A. K.; Nordlander, P.
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl300269c

Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision
journal, October 2020


Spatial Nonlocality in the Optical Response of Metal Nanoparticles
journal, September 2011

  • David, Christin; García de Abajo, F. Javier
  • The Journal of Physical Chemistry C, Vol. 115, Issue 40
  • DOI: 10.1021/jp204261u

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps
journal, August 2011

  • Duan, Huigao; Hu, Hailong; Kumar, Karthik
  • ACS Nano, Vol. 5, Issue 9
  • DOI: 10.1021/nn2025868

Plasmonic Active “Hot Spots”‐Confined Photocatalytic CO 2 Reduction with High Selectivity for CH 4 Production
journal, February 2022


Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device
journal, September 2019


An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
journal, February 2013

  • Mubeen, Syed; Lee, Joun; Singh, Nirala
  • Nature Nanotechnology, Vol. 8, Issue 4
  • DOI: 10.1038/nnano.2013.18

Plasmon-Induced Hot Carriers in Metallic Nanoparticles
journal, July 2014

  • Manjavacas, Alejandro; Liu, Jun G.; Kulkarni, Vikram
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn502445f

Plasmons in Strongly Coupled Metallic Nanostructures
journal, June 2011

  • Halas, Naomi J.; Lal, Surbhi; Chang, Wei-Shun
  • Chemical Reviews, Vol. 111, Issue 6
  • DOI: 10.1021/cr200061k

A Review of Surface Plasmon Resonance-Enhanced Photocatalysis
journal, October 2012

  • Hou, Wenbo; Cronin, Stephen B.
  • Advanced Functional Materials, Vol. 23, Issue 13, p. 1612-1619
  • DOI: 10.1002/adfm.201202148

Gap-Plasmon Enhanced Gold Nanoparticle Photoluminescence
journal, October 2014

  • Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G.
  • ACS Photonics, Vol. 1, Issue 11
  • DOI: 10.1021/ph500304v

A visible light-driven plasmonic photocatalyst
journal, January 2014

  • Pincella, Francesca; Isozaki, Katsuhiro; Miki, Kazushi
  • Light: Science & Applications, Vol. 3, Issue 1
  • DOI: 10.1038/lsa.2014.14

Photochemical transformations on plasmonic metal nanoparticles
journal, May 2015

  • Linic, Suljo; Aslam, Umar; Boerigter, Calvin
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4281

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151