DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: More Realistic Intermediate Depth Dry Firn Densification in the Energy Exascale Earth System Model (E3SM)

Abstract

Abstract Earth system models account for seasonal snow cover, but many do not accommodate the deeper snowpack on ice sheets (aka firn) that slowly transforms to ice under accumulating snowfall. To accommodate and resolve firn depths of up to 60 m in the Energy Exascale Earth System Model's land surface model (ELM), we add 11 layers to its snowpack and evaluate three dry snow compaction equations in multi‐century simulations. After comparing results from ELM simulations (forced with atmospheric reanalysis) with empirical data, we find that implementing into ELM a two‐stage firn densification model produces more accurate dry firn densities at intermediate depths of 20–60 m. Compared to modeling firn using the equations in the (12 layer) Community Land Model (version 5), switching to the two‐stage firn densification model (with 16 layers) significantly decreases root‐mean‐square errors in upper 60 m dry firn densities by an average of 41 kg m −3 (31%). Simulations with three different firn density parameterizations show that the two‐stage firn densification model should be used for applications that prioritize accurate upper 60 m firn air content (FAC) in regions where the mean annual surface temperature is greater than roughly −31°C. Because snow metamorphism, firn density, and FAC are major components in modelingmore » ice sheet surface albedo, melt water retention, and climatic mass balance, these developments advance broader efforts to simulate the response of land ice to atmospheric forcing in Earth system models.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Department of Earth System Science University of California, Irvine Irvine CA USA
  2. Fluid Dynamics and Solid Mechanics Group Los Alamos National Laboratory Los Alamos NM USA
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1848026
Alternate Identifier(s):
OSTI ID: 1859666; OSTI ID: 1868290
Report Number(s):
LA-UR-21-26576
Journal ID: ISSN 1942-2466; e2021MS002542
Grant/Contract Number:  
LANL‐520117; DE‐SC0019278; 89233218CNA000001; SC0019278
Resource Type:
Published Article
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Name: Journal of Advances in Modeling Earth Systems Journal Volume: 14 Journal Issue: 3; Journal ID: ISSN 1942-2466
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Earth Sciences

Citation Formats

Schneider, Adam M., Zender, Charles S., and Price, Stephen F. More Realistic Intermediate Depth Dry Firn Densification in the Energy Exascale Earth System Model (E3SM). United States: N. p., 2022. Web. doi:10.1029/2021MS002542.
Schneider, Adam M., Zender, Charles S., & Price, Stephen F. More Realistic Intermediate Depth Dry Firn Densification in the Energy Exascale Earth System Model (E3SM). United States. https://doi.org/10.1029/2021MS002542
Schneider, Adam M., Zender, Charles S., and Price, Stephen F. Sat . "More Realistic Intermediate Depth Dry Firn Densification in the Energy Exascale Earth System Model (E3SM)". United States. https://doi.org/10.1029/2021MS002542.
@article{osti_1848026,
title = {More Realistic Intermediate Depth Dry Firn Densification in the Energy Exascale Earth System Model (E3SM)},
author = {Schneider, Adam M. and Zender, Charles S. and Price, Stephen F.},
abstractNote = {Abstract Earth system models account for seasonal snow cover, but many do not accommodate the deeper snowpack on ice sheets (aka firn) that slowly transforms to ice under accumulating snowfall. To accommodate and resolve firn depths of up to 60 m in the Energy Exascale Earth System Model's land surface model (ELM), we add 11 layers to its snowpack and evaluate three dry snow compaction equations in multi‐century simulations. After comparing results from ELM simulations (forced with atmospheric reanalysis) with empirical data, we find that implementing into ELM a two‐stage firn densification model produces more accurate dry firn densities at intermediate depths of 20–60 m. Compared to modeling firn using the equations in the (12 layer) Community Land Model (version 5), switching to the two‐stage firn densification model (with 16 layers) significantly decreases root‐mean‐square errors in upper 60 m dry firn densities by an average of 41 kg m −3 (31%). Simulations with three different firn density parameterizations show that the two‐stage firn densification model should be used for applications that prioritize accurate upper 60 m firn air content (FAC) in regions where the mean annual surface temperature is greater than roughly −31°C. Because snow metamorphism, firn density, and FAC are major components in modeling ice sheet surface albedo, melt water retention, and climatic mass balance, these developments advance broader efforts to simulate the response of land ice to atmospheric forcing in Earth system models.},
doi = {10.1029/2021MS002542},
journal = {Journal of Advances in Modeling Earth Systems},
number = 3,
volume = 14,
place = {United States},
year = {Sat Mar 05 00:00:00 EST 2022},
month = {Sat Mar 05 00:00:00 EST 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2021MS002542

Save / Share:

Works referenced in this record:

Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison
journal, January 2017

  • Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.
  • Frontiers in Earth Science, Vol. 5
  • DOI: 10.3389/feart.2017.00003

Firn data compilation reveals widespread decrease of firn air content in western Greenland
journal, January 2019

  • Vandecrux, Baptiste; MacFerrin, Michael; Machguth, Horst
  • The Cryosphere, Vol. 13, Issue 3
  • DOI: 10.5194/tc-13-845-2019

A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow
journal, January 2017


Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model: PARAMETERIZATION IMPROVEMENTS AND FUNCTIONAL AND STRUCTURAL ADVANCES
journal, January 2011

  • Lawrence, David M.; Oleson, Keith W.; Flanner, Mark G.
  • Journal of Advances in Modeling Earth Systems, Vol. 3, Issue 1
  • DOI: 10.1029/2011MS00045

Development of physically based liquid water schemes for Greenland firn-densification models
journal, January 2019

  • Verjans, Vincent; Leeson, Amber A.; Stevens, C. Max
  • The Cryosphere, Vol. 13, Issue 7
  • DOI: 10.5194/tc-13-1819-2019

Firn Densification by Grain-Boundary Sliding : a First Model
journal, March 1987


Extensive liquid meltwater storage in firn within the Greenland ice sheet
journal, December 2013

  • Forster, Richard R.; Box, Jason E.; van den Broeke, Michiel R.
  • Nature Geoscience, Vol. 7, Issue 2
  • DOI: 10.1038/ngeo2043

On the Birth of Structural and Crystallographic Fabric Signals in Polar Snow: A Case Study From the EastGRIP Snowpack
journal, September 2020


The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution
journal, July 2019

  • Golaz, Jean‐Christophe; Caldwell, Peter M.; Van Roekel, Luke P.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2018MS001603

An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System
journal, June 2018

  • Fyke, Jeremy; Sergienko, Olga; Löfverström, Marcus
  • Reviews of Geophysics, Vol. 56, Issue 2
  • DOI: 10.1029/2018RG000600

Observing and Modeling Ice Sheet Surface Mass Balance
journal, June 2019

  • Lenaerts, Jan T. M.; Medley, Brooke; Broeke, Michiel R.
  • Reviews of Geophysics, Vol. 57, Issue 2
  • DOI: 10.1029/2018RG000622

Present‐Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2
journal, February 2020

  • van Kampenhout, Leonardus; Lenaerts, Jan T. M.; Lipscomb, William H.
  • Journal of Geophysical Research: Earth Surface, Vol. 125, Issue 2
  • DOI: 10.1029/2019JF005318

The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2
journal, January 2012

  • Vionnet, V.; Brun, E.; Morin, S.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-773-2012

Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer: MEASUREMENTS OF GREENLAND AQUIFER
journal, January 2014

  • Koenig, Lora S.; Miège, Clément; Forster, Richard R.
  • Geophysical Research Letters, Vol. 41, Issue 1
  • DOI: 10.1002/2013GL058083

Present-day climate forcing and response from black carbon in snow
journal, January 2007

  • Flanner, Mark G.; Zender, Charles S.; Randerson, James T.
  • Journal of Geophysical Research, Vol. 112, Issue D11
  • DOI: 10.1029/2006JD008003

Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016)
journal, January 2018

  • Noël, Brice; van de Berg, Willem Jan; van Wessem, J. Melchior
  • The Cryosphere, Vol. 12, Issue 3
  • DOI: 10.5194/tc-12-811-2018

Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model
journal, January 2017


The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland
journal, January 2018

  • Montgomery, Lynn; Koenig, Lora; Alexander, Patrick
  • Earth System Science Data, Vol. 10, Issue 4
  • DOI: 10.5194/essd-10-1959-2018

An improved semi-empirical model for the densification of Antarctic firn
journal, January 2011

  • Ligtenberg, S. R. M.; Helsen, M. M.; van den Broeke, M. R.
  • The Cryosphere, Vol. 5, Issue 4
  • DOI: 10.5194/tc-5-809-2011

In situ measurements of Antarctic snow compaction compared with predictions of models
journal, January 2010

  • Arthern, Robert J.; Vaughan, David G.; Rankin, Andrew M.
  • Journal of Geophysical Research, Vol. 115, Issue F3
  • DOI: 10.1029/2009JF001306

Global Warming Threshold and Mechanisms for Accelerated Greenland Ice Sheet Surface Mass Loss
journal, September 2020

  • Sellevold, Raymond; Vizcaíno, Miren
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 9
  • DOI: 10.1029/2019MS002029

Present-day and future Greenland Ice Sheet precipitation frequency from CloudSat observations and the Community Earth System Model
journal, January 2020

  • Lenaerts, Jan T. M.; Camron, M. Drew; Wyburn-Powell, Christopher R.
  • The Cryosphere, Vol. 14, Issue 7
  • DOI: 10.5194/tc-14-2253-2020

Bayesian calibration of firn densification models
journal, January 2020

  • Verjans, Vincent; Leeson, Amber A.; Nemeth, Christopher
  • The Cryosphere, Vol. 14, Issue 9
  • DOI: 10.5194/tc-14-3017-2020

Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars
journal, December 2016

  • Miège, Clément; Forster, Richard R.; Brucker, Ludovic
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 12
  • DOI: 10.1002/2016JF003869

The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets
journal, January 2014


The Community Firn Model (CFM) v1.0
journal, January 2020

  • Stevens, C. Max; Verjans, Vincent; Lundin, Jessica M. D.
  • Geoscientific Model Development, Vol. 13, Issue 9
  • DOI: 10.5194/gmd-13-4355-2020

Depth and Density of the Antarctic Firn Layer
journal, May 2008


Sorge’s Law of Densification of Snow on High Polar Glaciers
journal, January 1954


On the recent contribution of the Greenland ice sheet to sea level change
journal, January 2016

  • van den Broeke, Michiel R.; Enderlin, Ellyn M.; Howat, Ian M.
  • The Cryosphere, Vol. 10, Issue 5
  • DOI: 10.5194/tc-10-1933-2016

Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014
journal, January 2015

  • Kuipers Munneke, P.; Ligtenberg, S. R. M.; Noël, B. P. Y.
  • The Cryosphere, Vol. 9, Issue 6
  • DOI: 10.5194/tc-9-2009-2015

Microstructure-based modeling of snow mechanics: a discrete element approach
journal, January 2015


Greenland Ice Sheet Contribution to 21st Century Sea Level Rise as Simulated by the Coupled CESM2.1‐CISM2.1
journal, April 2020

  • Muntjewerf, Laura; Petrini, Michele; Vizcaino, Miren
  • Geophysical Research Letters, Vol. 47, Issue 9
  • DOI: 10.1029/2019GL086836

ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
journal, January 2018

  • Krinner, Gerhard; Derksen, Chris; Essery, Richard
  • Geoscientific Model Development, Vol. 11, Issue 12
  • DOI: 10.5194/gmd-11-5027-2018

A Snow Density Dataset for Improving Surface Boundary Conditions in Greenland Ice Sheet Firn Modeling
journal, May 2018

  • Fausto, Robert S.; Box, Jason E.; Vandecrux, Baptiste
  • Frontiers in Earth Science, Vol. 6
  • DOI: 10.3389/feart.2018.00051

Ice sheets as interactive components of Earth System Models: progress and challenges: Ice sheets as interactive components of Earth System Models
journal, May 2014

  • Vizcaino, Miren
  • Wiley Interdisciplinary Reviews: Climate Change, Vol. 5, Issue 4
  • DOI: 10.1002/wcc.285

GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet
journal, January 2020

  • Fettweis, Xavier; Hofer, Stefan; Krebs-Kanzow, Uta
  • The Cryosphere, Vol. 14, Issue 11
  • DOI: 10.5194/tc-14-3935-2020

A review of finite-element modelling in snow mechanics
journal, January 2013

  • Podolskiy, E. A.; Chambon, G.; Naaim, M.
  • Journal of Glaciology, Vol. 59, Issue 218
  • DOI: 10.3189/2013JoG13J121

Firn Model Intercomparison Experiment (FirnMICE)
journal, February 2017

  • Lundin, Jessica M. D.; Stevens, C. Max; Arthern, Robert
  • Journal of Glaciology, Vol. 63, Issue 239
  • DOI: 10.1017/jog.2016.114

Linking snowpack microphysics and albedo evolution
journal, January 2006

  • Flanner, Mark G.; Zender, Charles S.
  • Journal of Geophysical Research, Vol. 111, Issue D12
  • DOI: 10.1029/2005JD006834

Firn Densification: An Empirical Model
journal, January 1980


The physics of snow crystals
journal, March 2005


Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet
journal, November 2013

  • van Angelen, J. H.; van den Broeke, M. R.; Wouters, B.
  • Surveys in Geophysics, Vol. 35, Issue 5
  • DOI: 10.1007/s10712-013-9261-z

Improving the Representation of Polar Snow and Firn in the Community Earth System Model: IMPROVING POLAR SNOW AND FIRN IN CESM
journal, November 2017

  • van Kampenhout, Leonardus; Lenaerts, Jan T. M.; Lipscomb, William H.
  • Journal of Advances in Modeling Earth Systems, Vol. 9, Issue 7
  • DOI: 10.1002/2017MS000988

A physical SNOWPACK model for the Swiss avalanche warning
journal, November 2002