DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Ligand Protonation in Noninnocent Constrained-Geometry-Like Group 4 Complexes

Abstract

The proligands C5H5CMe2CHPhOxR (R = Me2, CHMe2, and CMe3) react with M(NMe2)4 (M = Ti, Zr, and Hf) to give monodeprotonated (OxRCHPhCMe2C5H4)M(NMe2)3, doubly deprotonated (C5H4CMe2CPhOxR)M(NMe2)2, or a mixture of both. The observed products depend on reaction conditions, the oxazoline substituent, and the metal center, with 4-t-butyl-oxazoline or Ti giving only the monodeprotonated (OxRCHPhCMe2C5H4)M(NMe2)3. Amine elimination from (OxRCHPhCMe2C5H4)M(NMe2)3 to give (C5H4CMe2CPhOxR)M(NMe2)2 is reversible for 4,4-dimethyl- and 4-isopropyl-oxazoline-based ligands in Zr or Hf complexes. Temperature-dependent kinetic studies of the equilibration of (C5H4CMe2CPhOxMe2)Zr(NMe2)2, HNMe2 and (OxMe2CHPhCMe2C5H4)Zr(NMe2)3 provide the experimental thermodynamic parameters ΔS° = -17.4 ± 2.6 cal·mol–1K–1 and ΔH° = -6.8 ± 0.8 kcal·mol–1. An Eyring plot of the rate constants, determined from the system as it approaches equilibrium, gives the activation entropy and activation enthalpy for the addition of (C5H4CMe2CPhOxMe2)Zr(NMe2)2 and HNMe2 as -36 ± 4 cal·mol–1 K–1 and 8.9 ± 1.3 kcal·mol–1, respectively; the elimination of HNMe2 from (OxMe2CHPhCMe2C5H4)Zr(NMe2)3 is characterized by ΔS = -19 ± 5 cal·mol–1 K–1 and ΔH = 15.7 ± 1.5 kcal·mol–1. DFT computational models indicate a single-step, nonlinear transfer of the H between the benzylic position of the noninnocent, oxazoline-coordinated ligand and NMe2. Computations also confirm the negative activation entropy and the trends in the barriersmore » support the experimental results. Together, these studies indicate the importance of steric effects from the oxazoline ligand, metal center, ancillary ligands, and leaving group on the shuttling of the proton between HNMe2 and the noninnocent ligand. Finally, these effects suggest that coordination of oxazoline to the metal center is a key part of the benzylic deprotonation and noninnocent behavior of the cyclopentadienyl-oxazoline ligand.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Iowa State Univ., Ames, IA (United States); Ames Lab., and Iowa State Univ., Ames, IA (United States)
  2. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1842218
Report Number(s):
IS-J-10,691
Journal ID: ISSN 0276-7333
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Organometallics
Additional Journal Information:
Journal Volume: 41; Journal Issue: 2; Journal ID: ISSN 0276-7333
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; mixtures; chemical structure; molecular structure; alkyls; ligands

Citation Formats

Chu, Yang-Yun, Lolinco, Annabelle, Eedugurala, Naresh, Ellern, Arkady, Windus, Theresa L., and Sadow, Aaron D. Reversible Ligand Protonation in Noninnocent Constrained-Geometry-Like Group 4 Complexes. United States: N. p., 2022. Web. doi:10.1021/acs.organomet.1c00612.
Chu, Yang-Yun, Lolinco, Annabelle, Eedugurala, Naresh, Ellern, Arkady, Windus, Theresa L., & Sadow, Aaron D. Reversible Ligand Protonation in Noninnocent Constrained-Geometry-Like Group 4 Complexes. United States. https://doi.org/10.1021/acs.organomet.1c00612
Chu, Yang-Yun, Lolinco, Annabelle, Eedugurala, Naresh, Ellern, Arkady, Windus, Theresa L., and Sadow, Aaron D. Thu . "Reversible Ligand Protonation in Noninnocent Constrained-Geometry-Like Group 4 Complexes". United States. https://doi.org/10.1021/acs.organomet.1c00612. https://www.osti.gov/servlets/purl/1842218.
@article{osti_1842218,
title = {Reversible Ligand Protonation in Noninnocent Constrained-Geometry-Like Group 4 Complexes},
author = {Chu, Yang-Yun and Lolinco, Annabelle and Eedugurala, Naresh and Ellern, Arkady and Windus, Theresa L. and Sadow, Aaron D.},
abstractNote = {The proligands C5H5CMe2CHPhOxR (R = Me2, CHMe2, and CMe3) react with M(NMe2)4 (M = Ti, Zr, and Hf) to give monodeprotonated (OxRCHPhCMe2C5H4)M(NMe2)3, doubly deprotonated (C5H4CMe2CPhOxR)M(NMe2)2, or a mixture of both. The observed products depend on reaction conditions, the oxazoline substituent, and the metal center, with 4-t-butyl-oxazoline or Ti giving only the monodeprotonated (OxRCHPhCMe2C5H4)M(NMe2)3. Amine elimination from (OxRCHPhCMe2C5H4)M(NMe2)3 to give (C5H4CMe2CPhOxR)M(NMe2)2 is reversible for 4,4-dimethyl- and 4-isopropyl-oxazoline-based ligands in Zr or Hf complexes. Temperature-dependent kinetic studies of the equilibration of (C5H4CMe2CPhOxMe2)Zr(NMe2)2, HNMe2 and (OxMe2CHPhCMe2C5H4)Zr(NMe2)3 provide the experimental thermodynamic parameters ΔS° = -17.4 ± 2.6 cal·mol–1K–1 and ΔH° = -6.8 ± 0.8 kcal·mol–1. An Eyring plot of the rate constants, determined from the system as it approaches equilibrium, gives the activation entropy and activation enthalpy for the addition of (C5H4CMe2CPhOxMe2)Zr(NMe2)2 and HNMe2 as -36 ± 4 cal·mol–1 K–1 and 8.9 ± 1.3 kcal·mol–1, respectively; the elimination of HNMe2 from (OxMe2CHPhCMe2C5H4)Zr(NMe2)3 is characterized by ΔS‡ = -19 ± 5 cal·mol–1 K–1 and ΔH‡ = 15.7 ± 1.5 kcal·mol–1. DFT computational models indicate a single-step, nonlinear transfer of the H between the benzylic position of the noninnocent, oxazoline-coordinated ligand and NMe2. Computations also confirm the negative activation entropy and the trends in the barriers support the experimental results. Together, these studies indicate the importance of steric effects from the oxazoline ligand, metal center, ancillary ligands, and leaving group on the shuttling of the proton between HNMe2 and the noninnocent ligand. Finally, these effects suggest that coordination of oxazoline to the metal center is a key part of the benzylic deprotonation and noninnocent behavior of the cyclopentadienyl-oxazoline ligand.},
doi = {10.1021/acs.organomet.1c00612},
journal = {Organometallics},
number = 2,
volume = 41,
place = {United States},
year = {Thu Jan 06 00:00:00 EST 2022},
month = {Thu Jan 06 00:00:00 EST 2022}
}

Works referenced in this record:

Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis
journal, August 2011

  • Gunanathan, Chidambaram; Milstein, David
  • Accounts of Chemical Research, Vol. 44, Issue 8
  • DOI: 10.1021/ar2000265

Heterolytic Cleavage of Dihydrogen by an Iron(II) PNP Pincer Complex via Metal–Ligand Cooperation
journal, July 2013

  • Bichler, Bernhard; Holzhacker, Christian; Stöger, Berthold
  • Organometallics, Vol. 32, Issue 15
  • DOI: 10.1021/om400241x

Ansa-metallocene polymerization catalysts derived from [2+2]cycloaddition reactions of bis(1-methylethenyl-cyclopentadienyl)zirconium systems
journal, October 2006

  • Paradies, J.; Kehr, G.; Frohlich, R.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 42
  • DOI: 10.1073/pnas.0602627103

Efficient Synthesis of rac-(Ethylenebis(indenyl))ZrX2 Complexes via Amine Elimination
journal, January 1995

  • Diamond, Gary M.; Rodewald, Stephan; Jordan, Richard F.
  • Organometallics, Vol. 14, Issue 1
  • DOI: 10.1021/om00001a003

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


C2-symmetric bis(oxazolinato) complexes of yttrium and lanthanum † ‡
journal, January 1999

  • Görlitzer, Hans W.; Spiegler, Michael; Anwander, Reiner
  • Journal of the Chemical Society, Dalton Transactions, Issue 24
  • DOI: 10.1039/a908313h

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Comparison of Three Chain-of-States Methods: Nudged Elastic Band and Replica Path with Restraints or Constraints
journal, September 2012

  • Tao, Peng; Hodošček, Milan; Larkin, Joseph D.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 12
  • DOI: 10.1021/ct3006248

Four-Electron Oxidative Formation of Aryl Diazenes Using a Tantalum Redox-Active Ligand Complex
journal, June 2008

  • Zarkesh, Ryan A.; Ziller, Joseph W.; Heyduk, Alan F.
  • Angewandte Chemie International Edition, Vol. 47, Issue 25
  • DOI: 10.1002/anie.200800812

The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones
journal, February 1997

  • Haack, Karl-Josef; Hashiguchi, Shohei; Fujii, Akio
  • Angewandte Chemie International Edition in English, Vol. 36, Issue 3
  • DOI: 10.1002/anie.199702851

Rapid, Reversible Heterolytic Cleavage of Bound H 2
journal, July 2013

  • Hulley, Elliott B.; Welch, Kevin D.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja405755j

Ketone Enolization by Lithium Hexamethyldisilazide:  Structural and Rate Studies of the Accelerating Effects of Trialkylamines
journal, October 2003

  • Zhao, Pinjing; Collum, David B.
  • Journal of the American Chemical Society, Vol. 125, Issue 47
  • DOI: 10.1021/ja030168v

Gas-phase reactivity of protonated 2-oxazoline derivatives: mass spectrometry and computational studies: Gas-phase reactivity of protonated 2-oxazoline derivatives
journal, March 2012

  • Vessecchi, Ricardo; Tomaz, José Carlos; Santos, Guilherme Purcote dos
  • Rapid Communications in Mass Spectrometry, Vol. 26, Issue 9
  • DOI: 10.1002/rcm.6182

Exploiting Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts
journal, April 2015


Efficient Synthesis of Chiral ansa -Metallocenes by Amine Elimination. Synthesis, Structure, and Reactivity of rac -(EBI)Zr(NMe 2 ) 2
journal, January 1996

  • Diamond, Gary M.; Jordan, Richard F.; Petersen, Jeffrey L.
  • Journal of the American Chemical Society, Vol. 118, Issue 34
  • DOI: 10.1021/ja9604830

Cyclopentadienyl-bis(oxazoline) Magnesium and Zirconium Complexes in Aminoalkene Hydroaminations
journal, November 2015


Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Computational Implementation of Nudged Elastic Band, Rigid Rotation, and Corresponding Force Optimization
journal, June 2017

  • Herbol, Henry C.; Stevenson, James; Clancy, Paulette
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 7
  • DOI: 10.1021/acs.jctc.7b00360

An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium
journal, May 2015

  • Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.
  • Angewandte Chemie International Edition, Vol. 54, Issue 28
  • DOI: 10.1002/anie.201501659

Hydrogenation and Hydrosilylation of Nitrous Oxide Homogeneously Catalyzed by a Metal Complex
journal, April 2017

  • Zeng, Rong; Feller, Moran; Ben-David, Yehoshoa
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b02124

One- and Two-Electron Reactivity of a Tantalum(V) Complex with a Redox-Active Tris(amido) Ligand
journal, February 2009

  • Nguyen, Andy I.; Blackmore, Karen J.; Carter, Shawn M.
  • Journal of the American Chemical Society, Vol. 131, Issue 9
  • DOI: 10.1021/ja808542j

C−C Bond-Forming Reductive Elimination from a Zirconium(IV) Redox-Active Ligand Complex
journal, July 2006

  • Haneline, Mason R.; Heyduk, Alan F.
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja061107a

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Amides of rhodium and iridium stabilized as hybrid multidentate ligands
journal, February 1983

  • Fryzuk, Michael D.; MacNeil, Patricia A.
  • Organometallics, Vol. 2, Issue 2
  • DOI: 10.1021/om00074a030

Lithium Hexamethyldisilazide-Mediated Enolization of Acylated Oxazolidinones: Solvent, Cosolvent, and Isotope Effects on Competing Monomer- and Dimer-Based Pathways
journal, January 2017

  • Reyes-Rodríguez, Gabriel J.; Algera, Russell F.; Collum, David B.
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b11354

Carbon–Carbon Reductive Elimination from Homoleptic Uranium(IV) Alkyls Induced by Redox-Active Ligands
journal, April 2012

  • Kraft, Steven J.; Fanwick, Phillip E.; Bart, Suzanne C.
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja209524u

Cooperative Reactivity in Carbometalated Pincer-Type Complexes Possessing an Appended Functionality
journal, December 2019


A zwitterionic zirconium complex that catalyzes hydroamination of aminoalkenes at room temperature
journal, January 2010

  • Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D.
  • Chem. Commun., Vol. 46, Issue 2
  • DOI: 10.1039/B918989K