DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics

Abstract

The many-body expansion (MBE) and its extension to overlapping fragments, the generalized (G)MBE, constitute the theoretical basis for most fragment-based approaches for large-scale quantum chemistry. We reformulate the GMBE for use with embedding charges determined self-consistently from the fragment wave functions, in a manner that preserves the variational nature of the underlying self-consistent field method. As a result, the analytic gradient retains the simple “sum of fragment gradients” form that is often assumed in practice, sometimes incorrectly. This obviates (without approximation) the need to solve coupled-perturbed equations, and we demonstrate stable, fragment-based ab initio molecular dynamics simulations using this technique. Energy conservation fails when charge-response contributions to the Fock matrix are neglected, even while geometry optimizations and vibrational frequency calculations may yet be accurate. Stable simulations can be recovered by means of straightforward modifications introduced here, providing a general paradigm for fragment-based ab initio molecular dynamics.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. The Ohio State Univ., Columbus, OH (United States)
Publication Date:
Research Org.:
The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1604456
Grant/Contract Number:  
SC0008850
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 10; Journal Issue: 14; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Liu, Jie, Rana, Bhaskar, Liu, Kuan-Yu, and Herbert, John M. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. United States: N. p., 2019. Web. doi:10.1021/acs.jpclett.9b01214.
Liu, Jie, Rana, Bhaskar, Liu, Kuan-Yu, & Herbert, John M. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics. United States. https://doi.org/10.1021/acs.jpclett.9b01214
Liu, Jie, Rana, Bhaskar, Liu, Kuan-Yu, and Herbert, John M. Thu . "Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics". United States. https://doi.org/10.1021/acs.jpclett.9b01214. https://www.osti.gov/servlets/purl/1604456.
@article{osti_1604456,
title = {Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based ab Initio Molecular Dynamics},
author = {Liu, Jie and Rana, Bhaskar and Liu, Kuan-Yu and Herbert, John M.},
abstractNote = {The many-body expansion (MBE) and its extension to overlapping fragments, the generalized (G)MBE, constitute the theoretical basis for most fragment-based approaches for large-scale quantum chemistry. We reformulate the GMBE for use with embedding charges determined self-consistently from the fragment wave functions, in a manner that preserves the variational nature of the underlying self-consistent field method. As a result, the analytic gradient retains the simple “sum of fragment gradients” form that is often assumed in practice, sometimes incorrectly. This obviates (without approximation) the need to solve coupled-perturbed equations, and we demonstrate stable, fragment-based ab initio molecular dynamics simulations using this technique. Energy conservation fails when charge-response contributions to the Fock matrix are neglected, even while geometry optimizations and vibrational frequency calculations may yet be accurate. Stable simulations can be recovered by means of straightforward modifications introduced here, providing a general paradigm for fragment-based ab initio molecular dynamics.},
doi = {10.1021/acs.jpclett.9b01214},
journal = {Journal of Physical Chemistry Letters},
number = 14,
volume = 10,
place = {United States},
year = {Thu Jun 06 00:00:00 EDT 2019},
month = {Thu Jun 06 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method
journal, January 2004

  • Fedorov, Dmitri G.; Kitaura, Kazuo
  • The Journal of Chemical Physics, Vol. 121, Issue 6
  • DOI: 10.1063/1.1769362

Accurate Composite and Fragment-Based Quantum Chemical Models for Large Molecules
journal, April 2015

  • Raghavachari, Krishnan; Saha, Arjun
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500606e

Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method
journal, June 2010


Rapid computation of intermolecular interactions in molecular and ionic clusters: self-consistent polarization plus symmetry-adapted perturbation theory
journal, January 2012

  • Herbert, John M.; Jacobson, Leif D.; Un Lao, Ka
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 21
  • DOI: 10.1039/c2cp24060b

Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method
journal, November 2014

  • Brorsen, Kurt R.; Zahariev, Federico; Nakata, Hiroya
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 12
  • DOI: 10.1021/ct500808p

Exploring chemistry with the fragment molecular orbital method
journal, January 2012

  • Fedorov, Dmitri G.; Nagata, Takeshi; Kitaura, Kazuo
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 21
  • DOI: 10.1039/c2cp23784a

Fragment molecular orbital method: an approximate computational method for large molecules
journal, November 1999


Approximating quantum many-body intermolecular interactions in molecular clusters using classical polarizable force fields
journal, April 2009

  • Beran, Gregory J. O.
  • The Journal of Chemical Physics, Vol. 130, Issue 16
  • DOI: 10.1063/1.3121323

Extending the Power of Quantum Chemistry to Large Systems with the Fragment Molecular Orbital Method
journal, August 2007

  • Fedorov, Dmitri G.; Kitaura, Kazuo
  • The Journal of Physical Chemistry A, Vol. 111, Issue 30
  • DOI: 10.1021/jp0716740

Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method
journal, June 2009


Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment
journal, February 2017

  • Jose, K. V. Jovan; Raghavachari, Krishnan
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 3
  • DOI: 10.1021/acs.jctc.6b00922

Benchmark Relative Energies for Large Water Clusters with the Generalized Energy-Based Fragmentation Method
journal, May 2017

  • Yuan, Dandan; Li, Yunzhi; Ni, Zhigang
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 6
  • DOI: 10.1021/acs.jctc.7b00284

Application of the Systematic Molecular Fragmentation by Annihilation Method to ab Initio NMR Chemical Shift Calculations
journal, November 2018

  • Kobayashi, Rika; Amos, Roger D.; Reid, David M.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 46
  • DOI: 10.1021/acs.jpca.8b09565

Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges
journal, October 2008

  • Parandekar, Priya V.; Hratchian, Hrant P.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 129, Issue 14
  • DOI: 10.1063/1.2976570

Molecular Tailoring Approach: A Route for ab Initio Treatment of Large Clusters
journal, May 2014

  • Sahu, Nityananda; Gadre, Shridhar R.
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500079b

Energy-Based Molecular Fragmentation Methods
journal, April 2015

  • Collins, Michael A.; Bettens, Ryan P. A.
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500455b

Electrostatically Embedded Molecular Tailoring Approach and Validation for Peptides
journal, February 2013

  • Isegawa, Miho; Wang, Bo; Truhlar, Donald G.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 3
  • DOI: 10.1021/ct300845q

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


The Fragment Molecular Orbital Method
book, January 2009


Erratum: “Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets” [J. Chem. Phys. 139 , 244108 (2013)]
journal, February 2015

  • Holden, Zachary C.; Richard, Ryan M.; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 142, Issue 5
  • DOI: 10.1063/1.4907623

Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory
journal, January 2018

  • Liu, Jinfeng; He, Xiao; Zhang, John Z. H.
  • Chemical Science, Vol. 9, Issue 8
  • DOI: 10.1039/C7SC04205A

Fragment molecular orbital method: application to molecular dynamics simulation, ‘ab initio FMO-MD’
journal, April 2003


Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters
journal, November 2006

  • Dahlke, Erin E.; Truhlar, Donald G.
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 1
  • DOI: 10.1021/ct600253j

Molecular forces, geometries, and frequencies by systematic molecular fragmentation including embedded charges
journal, September 2014

  • Collins, Michael A.
  • The Journal of Chemical Physics, Vol. 141, Issue 9
  • DOI: 10.1063/1.4894185

Aiming for Benchmark Accuracy with the Many-Body Expansion
journal, June 2014

  • Richard, Ryan M.; Lao, Ka Un; Herbert, John M.
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500119q

Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method
journal, July 2011

  • Nagata, Takeshi; Fedorov, Dmitri G.; Ishimura, Kazuya
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3611020

When are Many-Body Effects Significant?
journal, November 2016

  • Ouyang, John F.; Bettens, Ryan P. A.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 12
  • DOI: 10.1021/acs.jctc.6b00864

Explicit Polarization: A Quantum Mechanical Framework for Developing Next Generation Force Fields
journal, July 2014

  • Gao, Jiali; Truhlar, Donald G.; Wang, Yingjie
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar5002186

Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems
journal, March 2009


Generalized Energy-Based Fragmentation Approach and Its Applications to Macromolecules and Molecular Aggregates
journal, May 2014

  • Li, Shuhua; Li, Wei; Ma, Jing
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500038z

The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications: Fragment molecular orbital method in GAMESS
journal, June 2017

  • Fedorov, Dmitri G.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 7, Issue 6
  • DOI: 10.1002/wcms.1322

Cavity size in reaction field theory
journal, December 1998

  • Zhan, Chang-Guo; Chipman, Daniel M.
  • The Journal of Chemical Physics, Vol. 109, Issue 24
  • DOI: 10.1063/1.477755

Generalized Energy-Based Fragmentation Approach for Computing the Ground-State Energies and Properties of Large Molecules
journal, March 2007

  • Li, Wei; Li, Shuhua; Jiang, Yuansheng
  • The Journal of Physical Chemistry A, Vol. 111, Issue 11
  • DOI: 10.1021/jp067721q

Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography
journal, October 2016

  • Beran, Gregory J. O.; Hartman, Joshua D.; Heit, Yonaton N.
  • Accounts of Chemical Research, Vol. 49, Issue 11
  • DOI: 10.1021/acs.accounts.6b00404

Molecular tailoring approach for exploring structures, energetics and properties of clusters
journal, January 2010

  • Gadre, Shridhar R.; Jovan Jose, K. V.; Rahalkar, Anuja P.
  • Journal of Chemical Sciences, Vol. 122, Issue 1
  • DOI: 10.1007/s12039-010-0004-0

Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes
journal, April 2018

  • Lao, Ka Un; Herbert, John M.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 6
  • DOI: 10.1021/acs.jctc.8b00058

Fragmentation Methods: A Route to Accurate Calculations on Large Systems
journal, August 2011

  • Gordon, Mark S.; Fedorov, Dmitri G.; Pruitt, Spencer R.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200093j

Derivative studies in hartree-fock and møller-plesset theories
journal, March 1979

  • Pople, J. A.; Krishnan, R.; Schlegel, H. B.
  • International Journal of Quantum Chemistry, Vol. 16, Issue S13
  • DOI: 10.1002/qua.560160825

Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach
journal, August 2015

  • Jose, K. V. Jovan; Beckett, Daniel; Raghavachari, Krishnan
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 9
  • DOI: 10.1021/acs.jctc.5b00647

Fragment Quantum Mechanical Calculation of Proteins and Its Applications
journal, May 2014

  • He, Xiao; Zhu, Tong; Wang, Xianwei
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500077t

Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method
journal, August 2012


Molecules-in-Molecules: An Extrapolated Fragment-Based Approach for Accurate Calculations on Large Molecules and Materials
journal, April 2011

  • Mayhall, Nicholas J.; Raghavachari, Krishnan
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 5
  • DOI: 10.1021/ct200033b

Fragment molecular orbital-based molecular dynamics (FMO-MD) method with MP2 gradient
journal, February 2011


Enabling ab initio Hessian and frequency calculations of large molecules
journal, December 2008

  • Rahalkar, Anuja P.; Ganesh, V.; Gadre, Shridhar R.
  • The Journal of Chemical Physics, Vol. 129, Issue 23
  • DOI: 10.1063/1.2978387

Fragment molecular orbital method: analytical energy gradients
journal, March 2001


Corrected small basis set Hartree-Fock method for large systems
journal, May 2013

  • Sure, Rebecca; Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 34, Issue 19
  • DOI: 10.1002/jcc.23317

Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs
journal, October 2017

  • Liu, Kuan-Yu; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 147, Issue 16
  • DOI: 10.1063/1.4986110

Development of the four-body corrected fragment molecular orbital (FMO4) method
journal, January 2012


Molecular tailoring approach for geometry optimization of large molecules: Energy evaluation and parallelization strategies
journal, September 2006

  • Ganesh, V.; Dongare, Rameshwar K.; Balanarayan, P.
  • The Journal of Chemical Physics, Vol. 125, Issue 10
  • DOI: 10.1063/1.2339019

The Combined Fragmentation and Systematic Molecular Fragmentation Methods
journal, June 2014

  • Collins, Michael A.; Cvitkovic, Milan W.; Bettens, Ryan P. A.
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500088d

Molecules-in-molecules fragment-based method for the evaluation of Raman spectra of large molecules
journal, September 2015


Harmonizing accuracy and efficiency: A pragmatic approach to fragmentation of large molecules
journal, August 2018

  • Khire, Subodh S.; Bartolotti, Libero J.; Gadre, Shridhar R.
  • The Journal of Chemical Physics, Vol. 149, Issue 6
  • DOI: 10.1063/1.5036595

Fully analytic energy gradient in the fragment molecular orbital method
journal, March 2011

  • Brorsen, Kurt; Fedorov, Dmitri G.
  • The Journal of Chemical Physics, Vol. 134, Issue 12
  • DOI: 10.1063/1.3568010

Fast electron correlation methods for molecular clusters in the ground and excited states
journal, August 2005


Generalized energy-based fragmentation approach for modeling condensed phase systems: Generalized energy-based fragmentation approach
journal, January 2017

  • Fang, Tao; Li, Yunzhi; Li, Shuhua
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 7, Issue 2
  • DOI: 10.1002/wcms.1297

QM:QM electronic embedding using Mulliken atomic charges: Energies and analytic gradients in an ONIOM framework
journal, January 2008

  • Hratchian, Hrant P.; Parandekar, Priya V.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 128, Issue 3
  • DOI: 10.1063/1.2814164

Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient
journal, September 2012

  • Brorsen, Kurt R.; Minezawa, Noriyuki; Xu, Feng
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 12
  • DOI: 10.1021/ct3007869

Predicting Organic Crystal Lattice Energies with Chemical Accuracy
journal, December 2010

  • Beran, Gregory J. O.; Nanda, Kaushik
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 24
  • DOI: 10.1021/jz101383z

Efficient Monomer-Based Quantum Chemistry Methods for Molecular and Ionic Clusters
book, January 2013


Accelerated, energy-conserving Born–Oppenheimer molecular dynamics via Fock matrix extrapolation
journal, January 2005

  • Herbert, John M.; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18
  • DOI: 10.1039/b509494a

Approximate ab initio energies by systematic molecular fragmentation
journal, April 2005

  • Deev, Vitali; Collins, Michael A.
  • The Journal of Chemical Physics, Vol. 122, Issue 15
  • DOI: 10.1063/1.1879792

The three-body fragment molecular orbital method for accurate calculations of large systems
journal, December 2006


Many-Body Expansion with Overlapping Fragments: Analysis of Two Approaches
journal, February 2013

  • Richard, Ryan M.; Herbert, John M.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 3
  • DOI: 10.1021/ct300985h

Mathematical Formulation of the Fragment Molecular Orbital Method
book, January 2011

  • Nagata, Takeshi; Fedorov, Dmitri G.; Kitaura, Kazuo
  • Challenges and Advances in Computational Chemistry and Physics
  • DOI: 10.1007/978-90-481-2853-2_2

Tailoring approach for obtaining molecular orbitals of large systems#
journal, January 2012


Understanding the many-body expansion for large systems. II. Accuracy considerations
journal, April 2016

  • Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M.
  • The Journal of Chemical Physics, Vol. 144, Issue 16
  • DOI: 10.1063/1.4947087

Can Systematic Molecular Fragmentation Be Applied to Direct Ab Initio Molecular Dynamics?
journal, November 2016


Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals
journal, October 2014

  • Hartman, Joshua D.; Beran, Gregory J. O.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 11
  • DOI: 10.1021/ct500749h

Ab initio molecular dynamics with intramolecular noncovalent interactions for unsolvated polypeptides
journal, January 2016


Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction
journal, September 2015

  • Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14358

A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory
journal, August 2012

  • Richard, Ryan M.; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 137, Issue 6
  • DOI: 10.1063/1.4742816

Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method for Full Quantum Mechanical Calculation of Protein Energy
journal, March 2013

  • Wang, Xianwei; Liu, Jinfeng; Zhang, John Z. H.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 32
  • DOI: 10.1021/jp400779t

An Efficient Implementation of the Generalized Energy-Based Fragmentation Approach for General Large Molecules
journal, August 2010

  • Hua, Shugui; Hua, Weijie; Li, Shuhua
  • The Journal of Physical Chemistry A, Vol. 114, Issue 31
  • DOI: 10.1021/jp103074f

Geometry Optimizations and Vibrational Spectra of Large Molecules from a Generalized Energy-Based Fragmentation Approach
journal, October 2008

  • Hua, Weijie; Fang, Tao; Li, Wei
  • The Journal of Physical Chemistry A, Vol. 112, Issue 43
  • DOI: 10.1021/jp8026385

Theoretical Study of Protein–Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method
journal, August 2018

  • Thapa, Bishnu; Beckett, Daniel; Erickson, Jon
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 10
  • DOI: 10.1021/acs.jctc.8b00531

Understanding the many-body expansion for large systems. I. Precision considerations
journal, July 2014

  • Richard, Ryan M.; Lao, Ka Un; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 141, Issue 1
  • DOI: 10.1063/1.4885846

Accuracy of finite-difference harmonic frequencies in density functional theory
journal, May 2017

  • Liu, Kuan-Yu; Liu, Jie; Herbert, John M.
  • Journal of Computational Chemistry, Vol. 38, Issue 19
  • DOI: 10.1002/jcc.24811

Accurate Relative Energies and Binding Energies of Large Ice–Liquid Water Clusters and Periodic Structures
journal, May 2017


The Fragment Molecular Orbital Method for Geometry Optimizations of Polypeptides and Proteins
journal, April 2007

  • Fedorov, Dmitri G.; Ishida, Toyokazu; Uebayasi, Masami
  • The Journal of Physical Chemistry A, Vol. 111, Issue 14
  • DOI: 10.1021/jp0671042

Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method
journal, October 2014

  • Nakata, Hiroya; Schmidt, Michael W.; Fedorov, Dmitri G.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 41
  • DOI: 10.1021/jp507726m

Fragment Quantum Mechanical Method for Large-Sized Ion–Water Clusters
journal, April 2017

  • Liu, Jinfeng; Qi, Lian-Wen; Zhang, John Z. H.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 5
  • DOI: 10.1021/acs.jctc.7b00149

Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets
journal, December 2013

  • Holden, Zachary C.; Richard, Ryan M.; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 139, Issue 24
  • DOI: 10.1063/1.4850655

The variational explicit polarization potential and analytical first derivative of energy: Towards a next generation force field
journal, June 2008

  • Xie, Wangshen; Song, Lingchun; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 128, Issue 23
  • DOI: 10.1063/1.2936122

First Principles NMR Calculations by Fragmentation
journal, May 2007

  • Lee, Adrian M.; Bettens, Ryan P. A.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 23
  • DOI: 10.1021/jp0718754

Self-consistent charge embedding at very low cost, with application to symmetry-adapted perturbation theory
journal, July 2019

  • Liu, Kuan-Yu; Carter-Fenk, Kevin; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 151, Issue 3
  • DOI: 10.1063/1.5111869

Works referencing / citing this record:

Self-consistent charge embedding at very low cost, with application to symmetry-adapted perturbation theory
journal, July 2019

  • Liu, Kuan-Yu; Carter-Fenk, Kevin; Herbert, John M.
  • The Journal of Chemical Physics, Vol. 151, Issue 3
  • DOI: 10.1063/1.5111869

Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach
journal, November 2019

  • Veccham, Srimukh Prasad; Lee, Joonho; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 151, Issue 19
  • DOI: 10.1063/1.5125802

Fantasy versus reality in fragment-based quantum chemistry
journal, November 2019

  • Herbert, John M.
  • The Journal of Chemical Physics, Vol. 151, Issue 17
  • DOI: 10.1063/1.5126216

Making Many-Body Interactions Nearly Pairwise Additive: The Polarized Many-Body Expansion Approach
text, January 2019