DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands

Abstract

In this work, a series of Ir catalysts bearing amide-based ligands generated by a deprotonated amide moiety was prepared with the hypotheses that the strong electron-donating ability of the coordinated anionic nitrogen atom and the proton-responsive OH group near the metal center will improve the catalytic activity for CO2 hydrogenation and formic acid (FA) dehydrogenation. The effects of the modifications of the ligand architecture on the catalytic activity were investigated for CO2 hydrogenation at ambient conditions (25 °C with 0.1 MPa H2/CO2 (v/v = 1/1)) and under slightly harsher conditions (50 °C with 1.0 MPa H2/CO2) in basic aqueous solutions together with deuterium kinetic isotope effects (KIEs) with selected catalysts. Cp*Ir(L12)(H2O)HSO4 (L12 = 6-hydroxy-N-phenylpicolinamidate) that has an anionic coordinating N atom and an OH group in the second coordination sphere, exhibits a turnover frequency (TOF) of 198 h–1 based on the initial 1 h of reaction. This TOF which, to the best of our knowledge, is the highest value ever reported under ambient conditions in basic aqueous solutions. However, Cp*Ir(L10)(H2O)HSO4 (L10 = (4-hydroxy-N-methylpicolinamidate) performs better in long-term CO2 hydrogenation (up to a TON of 14 700 with [Ir] = 10 μM after 348 h and the final formate concentration ofmore » 0.643 M with [Ir] = 250 μM) at ambient conditions. Further, the catalytic activity for FA dehydrogenation was examined under three different conditions (pH 1.6, 2.3, and 3.5). The Cp*Ir(L12)(H2O)HSO4 complex in any of these conditions is less active compared to the picolinamidate catalysts without ortho-OH, owing to its instability. The complex without OH group, Cp*Ir(L8)(H2O)HSO4 (L8 = N-phenyl-picolinamidate), exhibits a high TOF (up to 118 000 h-1) at 60 °C. Theoretical calculations were performed to examine the catalytic mechanism, and a step-by-step mechanism has been proposed for both CO2 hydrogenation and FA dehydrogenation reactions. Density functional theory calculations of [Cp*Ir(L3)(H2O)]HSO4 (L3 = picolinamidate) and the X-ray structure of the [Cp*Ir(L7)(H)]·H2O (L7 = N-methylpicolinamidate) complex imply a pH-dependent conformational change from N,N coordination to N,O coordination upon lowering the pH of the aqueous solution.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]
  1. National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan). Dept. of Energy and Environment, Research Inst. of Energy Frontier
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. City Univ. of New York (CUNY), NY (United States). Baruch College. Dept. of Natural Science
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Japan Science and Technology Agency (JST); Japan Society for the Promotion of Science (JSPS)
OSTI Identifier:
1599293
Report Number(s):
BNL-213622-2020-JAAM
Journal ID: ISSN 0276-7333
Grant/Contract Number:  
SC0012704; JPMJCR1342; 18K14267
Resource Type:
Accepted Manuscript
Journal Name:
Organometallics
Additional Journal Information:
Journal Volume: 39; Journal Issue: 9; Journal ID: ISSN 0276-7333
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; Catalysts; Catalytic activity; Transition metals; Ligands; Organic reactions

Citation Formats

Kanega, Ryoichi, Ertem, Mehmed Z., Onishi, Naoya, Szalda, David J., Fujita, Etsuko, and Himeda, Yuichiro. CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands. United States: N. p., 2020. Web. doi:10.1021/acs.organomet.9b00809.
Kanega, Ryoichi, Ertem, Mehmed Z., Onishi, Naoya, Szalda, David J., Fujita, Etsuko, & Himeda, Yuichiro. CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands. United States. https://doi.org/10.1021/acs.organomet.9b00809
Kanega, Ryoichi, Ertem, Mehmed Z., Onishi, Naoya, Szalda, David J., Fujita, Etsuko, and Himeda, Yuichiro. Wed . "CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands". United States. https://doi.org/10.1021/acs.organomet.9b00809. https://www.osti.gov/servlets/purl/1599293.
@article{osti_1599293,
title = {CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands},
author = {Kanega, Ryoichi and Ertem, Mehmed Z. and Onishi, Naoya and Szalda, David J. and Fujita, Etsuko and Himeda, Yuichiro},
abstractNote = {In this work, a series of Ir catalysts bearing amide-based ligands generated by a deprotonated amide moiety was prepared with the hypotheses that the strong electron-donating ability of the coordinated anionic nitrogen atom and the proton-responsive OH group near the metal center will improve the catalytic activity for CO2 hydrogenation and formic acid (FA) dehydrogenation. The effects of the modifications of the ligand architecture on the catalytic activity were investigated for CO2 hydrogenation at ambient conditions (25 °C with 0.1 MPa H2/CO2 (v/v = 1/1)) and under slightly harsher conditions (50 °C with 1.0 MPa H2/CO2) in basic aqueous solutions together with deuterium kinetic isotope effects (KIEs) with selected catalysts. Cp*Ir(L12)(H2O)HSO4 (L12 = 6-hydroxy-N-phenylpicolinamidate) that has an anionic coordinating N atom and an OH group in the second coordination sphere, exhibits a turnover frequency (TOF) of 198 h–1 based on the initial 1 h of reaction. This TOF which, to the best of our knowledge, is the highest value ever reported under ambient conditions in basic aqueous solutions. However, Cp*Ir(L10)(H2O)HSO4 (L10 = (4-hydroxy-N-methylpicolinamidate) performs better in long-term CO2 hydrogenation (up to a TON of 14 700 with [Ir] = 10 μM after 348 h and the final formate concentration of 0.643 M with [Ir] = 250 μM) at ambient conditions. Further, the catalytic activity for FA dehydrogenation was examined under three different conditions (pH 1.6, 2.3, and 3.5). The Cp*Ir(L12)(H2O)HSO4 complex in any of these conditions is less active compared to the picolinamidate catalysts without ortho-OH, owing to its instability. The complex without OH group, Cp*Ir(L8)(H2O)HSO4 (L8 = N-phenyl-picolinamidate), exhibits a high TOF (up to 118 000 h-1) at 60 °C. Theoretical calculations were performed to examine the catalytic mechanism, and a step-by-step mechanism has been proposed for both CO2 hydrogenation and FA dehydrogenation reactions. Density functional theory calculations of [Cp*Ir(L3)(H2O)]HSO4 (L3 = picolinamidate) and the X-ray structure of the [Cp*Ir(L7)(H)]·H2O (L7 = N-methylpicolinamidate) complex imply a pH-dependent conformational change from N,N coordination to N,O coordination upon lowering the pH of the aqueous solution.},
doi = {10.1021/acs.organomet.9b00809},
journal = {Organometallics},
number = 9,
volume = 39,
place = {United States},
year = {Wed Feb 05 00:00:00 EST 2020},
month = {Wed Feb 05 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017


Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid
journal, September 2018

  • Onishi, Naoya; Iguchi, Masayuki; Yang, Xinchun
  • Advanced Energy Materials, Vol. 9, Issue 23
  • DOI: 10.1002/aenm.201801275

Recent advances in catalytic hydrogenation of carbon dioxide
journal, January 2011

  • Wang, Wei; Wang, Shengping; Ma, Xinbin
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c1cs15008a

Direct formation of formic acid from carbon dioxide and dihydrogen using the [{Rh(cod)Cl} 2 ]–Ph 2 P(CH 2 ) 4 PPh 2 catalyst system
journal, January 1992


Homogeneous Catalysis in Supercritical Fluids:  Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides
journal, January 1996

  • Jessop, Philip G.; Hsiao, Yi; Ikariya, Takao
  • Journal of the American Chemical Society, Vol. 118, Issue 2
  • DOI: 10.1021/ja953097b

Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions
journal, January 2004

  • Hayashi, Hideki; Ogo, Seiji; Fukuzumi, Shunichi
  • Chemical Communications, Issue 23
  • DOI: 10.1039/b411633j

Simultaneous Tuning of Activity and Water Solubility of Complex Catalysts by Acid−Base Equilibrium of Ligands for Conversion of Carbon Dioxide
journal, January 2007

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Organometallics, Vol. 26, Issue 3
  • DOI: 10.1021/om060899e

Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)−Pincer Complexes
journal, October 2009

  • Tanaka, Ryo; Yamashita, Makoto; Nozaki, Kyoko
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja903574e

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity
journal, September 2011

  • Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201104542

Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Catalytic CO 2 Hydrogenation to Formate by a Ruthenium Pincer Complex
journal, September 2013

  • Huff, Chelsea A.; Sanford, Melanie S.
  • ACS Catalysis, Vol. 3, Issue 10
  • DOI: 10.1021/cs400609u

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Amine-Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change
journal, March 2015

  • Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain
  • ChemSusChem, Vol. 8, Issue 8
  • DOI: 10.1002/cssc.201403458

Base-free hydrogenation of CO 2 to formic acid in water with an iridium complex bearing a N,N′-diimine ligand
journal, January 2016

  • Lu, Sheng-Mei; Wang, Zhijun; Li, Jun
  • Green Chemistry, Vol. 18, Issue 16
  • DOI: 10.1039/C6GC00856A

Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N -Heterocyclic Carbene Complexes of Late Transition Metals
journal, September 2016

  • Jantke, Dominik; Pardatscher, Lorenz; Drees, Markus
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600861

Hydrogenation of CO 2 to formic acid with iridium III (bisMETAMORPhos)(hydride): the role of a dormant fac-Ir III (trihydride) and an active trans-Ir III (dihydride) species
journal, January 2016

  • Oldenhof, S.; van der Vlugt, J. I.; Reek, J. N. H.
  • Catalysis Science & Technology, Vol. 6, Issue 2
  • DOI: 10.1039/C5CY01476J

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Dehydrogenation of formic acid by Ir–bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand
journal, January 2015

  • Oldenhof, Sander; Lutz, Martin; de Bruin, Bas
  • Chemical Science, Vol. 6, Issue 2
  • DOI: 10.1039/C4SC02555E

Selective Formic Acid Dehydrogenation Catalyzed by Fe-PNP Pincer Complexes Based on the 2,6-Diaminopyridine Scaffold
journal, September 2016


Highly efficient dehydrogenation of formic acid in aqueous solution catalysed by an easily available water-soluble iridium( iii ) dihydride
journal, January 2016

  • Papp, G.; Ölveti, G.; Horváth, H.
  • Dalton Transactions, Vol. 45, Issue 37
  • DOI: 10.1039/C6DT01695B

Simple Continuous High-Pressure Hydrogen Production and Separation System from Formic Acid under Mild Temperatures
journal, December 2015


Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN 3 -Pincer Ligand
journal, April 2016

  • Pan, Yupeng; Pan, Cheng-Ling; Zhang, Yufan
  • Chemistry - An Asian Journal, Vol. 11, Issue 9
  • DOI: 10.1002/asia.201600169

Hydrogen generation from formic acid decomposition on a highly efficient iridium catalyst bearing a diaminoglyoxime ligand
journal, January 2018

  • Lu, Sheng-Mei; Wang, Zhijun; Wang, Jijie
  • Green Chemistry, Vol. 20, Issue 8
  • DOI: 10.1039/C8GC00495A

The roles of the first and second coordination spheres in the design of molecular catalysts for H 2 production and oxidation
journal, January 2009

  • Rakowski DuBois, M.; DuBois, Daniel L.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B801197B

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

Structure and Function of [Fe]-Hydrogenase and its Iron-Guanylylpyridinol (FeGP) Cofactor
journal, December 2010

  • Shima, Seigo; Ermler, Ulrich
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 7
  • DOI: 10.1002/ejic.201000955

The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site
journal, July 2008


Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure
journal, January 2012

  • Wang, Wan-Hui; Hull, Jonathan F.; Muckerman, James T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21888g

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015

  • Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502904q

Interconversion between Formic Acid and H2/CO2 using Rhodium and Ruthenium Catalysts for CO2 Fixation and H2 Storage
journal, January 2011


Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation : Cp*Ir Catalysts with Imidazoline Ligands for CO
journal, November 2015

  • Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 34
  • DOI: 10.1002/ejic.201501030

CO 2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands
journal, August 2017


Picolinamide‐Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability
journal, March 2018

  • Kanega, Ryoichi; Onishi, Naoya; Wang, Lin
  • Chemistry – A European Journal, Vol. 24, Issue 69
  • DOI: 10.1002/chem.201800428

Extremely Active, Tunable, and pH-Responsive Iridium Water Oxidation Catalysts
journal, December 2016


A Single Organoiridium Complex Generating Highly Active Catalysts for both Water Oxidation and NAD + /NADH Transformations
journal, October 2017


Picolinamides as Effective Ligands for Copper-Catalysed Aryl Ether Formation: Structure-Activity Relationships, Substrate Scope and Mechanistic Investigations
journal, October 2014

  • Sambiagio, Carlo; Munday, Rachel H.; Marsden, Stephen P.
  • Chemistry - A European Journal, Vol. 20, Issue 52
  • DOI: 10.1002/chem.201404275

N-Picolinamides as ligands for Ullmann-type CN coupling reactions
journal, May 2016


Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Energy-adjustedab initio pseudopotentials for the second and third row transition elements
journal, January 1990

  • Andrae, D.; H�u�ermann, U.; Dolg, M.
  • Theoretica Chimica Acta, Vol. 77, Issue 2
  • DOI: 10.1007/BF01114537

The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data
journal, October 1998

  • Tissandier, Michael D.; Cowen, Kenneth A.; Feng, Wan Yong
  • The Journal of Physical Chemistry A, Vol. 102, Issue 40
  • DOI: 10.1021/jp982638r

Comment on “Accurate Experimental Values for the Free Energies of Hydration of H + , OH - , and H 3 O +
journal, December 2005

  • Camaioni, Donald M.; Schwerdtfeger, Christine A.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 47
  • DOI: 10.1021/jp054088k

Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
journal, August 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp063552y

Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models
journal, August 2008

  • Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; Goddard III, William A.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 32
  • DOI: 10.1021/jp802665d

Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water
journal, April 1968

  • Covington, Arthur K.; Paabo, Maya.; Robinson, Robert Anthony.
  • Analytical Chemistry, Vol. 40, Issue 4
  • DOI: 10.1021/ac60260a013

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands
journal, January 2016

  • Onishi, Naoya; Ertem, Mehmed Z.; Xu, Shaoan
  • Catalysis Science & Technology, Vol. 6, Issue 4
  • DOI: 10.1039/C5CY01865J