DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets

Abstract

Hydrogen evolution reaction (HER) on molybdenum disulfide (MoS2) nanosheets is enhanced for the metallic (1T) phase relative to the thermodynamically stable semiconducting (2H) phase. To measure this difference, we employ scanning electrochemical microscopy (SECM) for high-resolution mapping (<20 nm spatial resolution) of surface reactivity for mixed-phase and pure 2H-only MoS2 nanosheets. For mixed-phase MoS2 nanosheets, we find major differences in reactivity of the two phases for electron transfer involving ferrocenemethanol, allowing us to locate 1T and 2H regions and directly map the corresponding HER activity. In our measurements, we find that HER is immeasurably slow on the 2H basal plane and much faster on edges, whereas 1T portions are highly reactive across the entire portion. We also use scanning transmission electron microscopy-electron energy loss spectroscopy and scanning Kelvin probe microscopy to corroborate the phase domains and local workfunctions (surface potentials) within the MoS2 nanosheets; the mixed-phase MoS2 has a shallower workfunction compared to 2H MoS2, which could enable a greater driving force for H2 generation. As a result, this powerful combination of techniques for spatially mapping surface reactivity and correlated phase domains should be applicable to a broad range of materials for HER and other catalysis reactions.

Authors:
 [1]; ORCiD logo [2];  [1];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2]
  1. Queens College-CUNY, Flushing, NY (United States); Graduate Center of CUNY, New York, NY (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1524319
Alternate Identifier(s):
OSTI ID: 1484536
Report Number(s):
NREL/JA-5900-71993
Journal ID: ISSN 2055-6756; NHAOAW
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale Horizons
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2055-6756
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; electron energy levels; electron energy loss spectroscopy; electron scattering; energy dissipation; high resolution transmission electron microscopy; hydrogen; layered semiconductors; mapping; nanosheets; scanning; scanning electron microscopy; scanning probe microscopy; sulfur compounds

Citation Formats

Sun, Tong, Zhang, Hanyu, Wang, Xiang, Liu, Jun, Xiao, Chuanxiao, Nanayakkara, Sanjini U., Blackburn, Jeffrey L., Mirkin, Michael V., and Miller, Elisa M. Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets. United States: N. p., 2018. Web. doi:10.1039/C8NH00346G.
Sun, Tong, Zhang, Hanyu, Wang, Xiang, Liu, Jun, Xiao, Chuanxiao, Nanayakkara, Sanjini U., Blackburn, Jeffrey L., Mirkin, Michael V., & Miller, Elisa M. Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets. United States. https://doi.org/10.1039/C8NH00346G
Sun, Tong, Zhang, Hanyu, Wang, Xiang, Liu, Jun, Xiao, Chuanxiao, Nanayakkara, Sanjini U., Blackburn, Jeffrey L., Mirkin, Michael V., and Miller, Elisa M. Thu . "Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets". United States. https://doi.org/10.1039/C8NH00346G. https://www.osti.gov/servlets/purl/1524319.
@article{osti_1524319,
title = {Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets},
author = {Sun, Tong and Zhang, Hanyu and Wang, Xiang and Liu, Jun and Xiao, Chuanxiao and Nanayakkara, Sanjini U. and Blackburn, Jeffrey L. and Mirkin, Michael V. and Miller, Elisa M.},
abstractNote = {Hydrogen evolution reaction (HER) on molybdenum disulfide (MoS2) nanosheets is enhanced for the metallic (1T) phase relative to the thermodynamically stable semiconducting (2H) phase. To measure this difference, we employ scanning electrochemical microscopy (SECM) for high-resolution mapping (<20 nm spatial resolution) of surface reactivity for mixed-phase and pure 2H-only MoS2 nanosheets. For mixed-phase MoS2 nanosheets, we find major differences in reactivity of the two phases for electron transfer involving ferrocenemethanol, allowing us to locate 1T and 2H regions and directly map the corresponding HER activity. In our measurements, we find that HER is immeasurably slow on the 2H basal plane and much faster on edges, whereas 1T portions are highly reactive across the entire portion. We also use scanning transmission electron microscopy-electron energy loss spectroscopy and scanning Kelvin probe microscopy to corroborate the phase domains and local workfunctions (surface potentials) within the MoS2 nanosheets; the mixed-phase MoS2 has a shallower workfunction compared to 2H MoS2, which could enable a greater driving force for H2 generation. As a result, this powerful combination of techniques for spatially mapping surface reactivity and correlated phase domains should be applicable to a broad range of materials for HER and other catalysis reactions.},
doi = {10.1039/C8NH00346G},
journal = {Nanoscale Horizons},
number = 3,
volume = 4,
place = {United States},
year = {Thu Nov 29 00:00:00 EST 2018},
month = {Thu Nov 29 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts
journal, May 2015


Atomically Thin Transition-Metal Dichalcogenides for Electrocatalysis and Energy Storage
journal, September 2017


Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies
journal, November 2015

  • Li, Hong; Tsai, Charlie; Koh, Ai Leen
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4465

Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Improved HER Catalysis through Facile, Aqueous Electrochemical Activation of Nanoscale WSe 2
journal, March 2018


Kinetic Study of Hydrogen Evolution Reaction over Strained MoS 2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy
journal, April 2016

  • Li, Hong; Du, Minshu; Mleczko, Michal J.
  • Journal of the American Chemical Society, Vol. 138, Issue 15
  • DOI: 10.1021/jacs.6b01377

Selective increase in CO 2 electroreduction activity at grain-boundary surface terminations
journal, November 2017


Mapping Catalytically Relevant Edge Electronic States of MoS 2
journal, February 2018


Efficient Hydrogen Evolution by Mechanically Strained MoS 2 Nanosheets
journal, August 2014

  • Lee, Ji Hoon; Jang, Woo Soon; Han, Sun Woong
  • Langmuir, Vol. 30, Issue 32
  • DOI: 10.1021/la501349k

Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets
journal, June 2016

  • Yin, Ying; Han, Jiecai; Zhang, Yumin
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b03714

2H/1T Phase Transition of Multilayer MoS 2 by Electrochemical Incorporation of S Vacancies
journal, August 2018

  • Gan, Xiaorong; Lee, Lawrence Yoon Suk; Wong, Kwok-yin
  • ACS Applied Energy Materials, Vol. 1, Issue 9
  • DOI: 10.1021/acsaem.8b00875

Electron-Doped 1T-MoS 2 via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution
journal, May 2017


Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS 2
journal, September 2017


Grain-Boundary-Dependent CO 2 Electroreduction Activity
journal, April 2015

  • Feng, Xiaofeng; Jiang, Kaili; Fan, Shoushan
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja5130513

Plasmon-Enhanced Photoelectrical Hydrogen Evolution on Monolayer MoS 2 Decorated Cu 1.75 S-Au Nanocrystals
journal, December 2016


Observing phase transformation in CVD-grown MoS 2 via atomic resolution TEM
journal, January 2018

  • Tai, Kuo-Lun; Huang, Guan-Min; Huang, Chun-Wei
  • Chemical Communications, Vol. 54, Issue 71
  • DOI: 10.1039/C8CC05129A

Scanning Electrochemical Microscopy of Individual Catalytic Nanoparticles
journal, October 2014

  • Sun, Tong; Yu, Yun; Zacher, Brian J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 51
  • DOI: 10.1002/anie.201408408

Quantification of the Surface Diffusion of Tripodal Binding Motifs on Graphene Using Scanning Electrochemical Microscopy
journal, March 2012

  • Rodríguez-López, Joaquín; Ritzert, Nicole L.; Mann, Jason A.
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja2106724

Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion
journal, July 2018


Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2
journal, April 2014

  • Lin, Yung-Chang; Dumcenco, Dumitru O.; Huang, Ying-Sheng
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.64

Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images
journal, October 2013


Highly Effective Visible-Light-Induced H 2 Generation by Single-Layer 1T-MoS 2 and a Nanocomposite of Few-Layer 2H-MoS 2 with Heavily Nitrogenated Graphene
journal, November 2013

  • Maitra, Urmimala; Gupta, Uttam; De, Mrinmoy
  • Angewandte Chemie International Edition, Vol. 52, Issue 49
  • DOI: 10.1002/anie.201306918

Direct instrumental identification of catalytically active surface sites
journal, September 2017

  • Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver
  • Nature, Vol. 549, Issue 7670
  • DOI: 10.1038/nature23661

The Hydrogen Economy
journal, December 2004

  • Crabtree, George W.; Dresselhaus, Mildred S.; Buchanan, Michelle V.
  • Physics Today, Vol. 57, Issue 12
  • DOI: 10.1063/1.1878333

Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential
journal, September 2015

  • Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9397

Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy
journal, June 2016

  • Kim, Jiyeon; Renault, Christophe; Nioradze, Nikoloz
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b03980

Built-in Potential and Charge Distribution within Single Heterostructured Nanorods Measured by Scanning Kelvin Probe Microscopy
journal, February 2013

  • Nanayakkara, Sanjini U.; Cohen, Gilad; Jiang, Chun-Sheng
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl4000147

Probing the local nature of excitons and plasmons in few-layer MoS2
journal, April 2017

  • Nerl, Hannah Catherine; Winther, Kirsten Trøstrup; Hage, Fredrik S.
  • npj 2D Materials and Applications, Vol. 1, Issue 1
  • DOI: 10.1038/s41699-017-0003-9

Highly active hydrogen evolution catalysis from metallic WS 2 nanosheets
journal, January 2014

  • Lukowski, Mark A.; Daniel, Andrew S.; English, Caroline R.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01329H

Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS 2
journal, September 2014


Mixed-Phase 2D-MoS 2 as an Effective Photocatalyst for Selective Aerobic Oxidative Coupling of Amines under Visible-Light Irradiation
journal, August 2018

  • Girish, Yarabhally R.; Biswas, Rohin; De, Mrinmoy
  • Chemistry - A European Journal, Vol. 24, Issue 52
  • DOI: 10.1002/chem.201802468

Synergistic Phase and Disorder Engineering in 1T-MoSe 2 Nanosheets for Enhanced Hydrogen-Evolution Reaction
journal, May 2017


H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover
journal, May 2013

  • Esposito, Daniel V.; Levin, Igor; Moffat, Thomas P.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3626

Scanning Probe Characterization of Heterostructured Colloidal Nanomaterials
journal, July 2015

  • Nanayakkara, Sanjini U.; van de Lagemaat, Jao; Luther, Joseph M.
  • Chemical Reviews, Vol. 115, Issue 16
  • DOI: 10.1021/cr500280t

Plasmonic hot electron enhanced MoS 2 photocatalysis in hydrogen evolution
journal, January 2015

  • Kang, Yimin; Gong, Yongji; Hu, Zhijian
  • Nanoscale, Vol. 7, Issue 10
  • DOI: 10.1039/C4NR07303G

Simultaneous Topography and Reaction Flux Mapping at and around Electrocatalytic Nanoparticles
journal, September 2017


Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Solid-state reaction as a mechanism of 1T ↔ 2H transformation in MoS 2 monolayers
journal, September 2015

  • Ryzhikov, Maxim R.; Slepkov, Vladimir A.; Kozlova, Svetlana G.
  • Journal of Computational Chemistry, Vol. 36, Issue 28
  • DOI: 10.1002/jcc.24188

Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS 2 Nanosheets via Covalent Functionalization
journal, December 2017

  • Benson, Eric E.; Zhang, Hanyu; Schuman, Samuel A.
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b11242

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS 2 ): basal vs. edge plane activity
journal, January 2017

  • Bentley, Cameron L.; Kang, Minkyung; Maddar, Faduma M.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC02545A

Local Surface Structure and Composition Control the Hydrogen Evolution Reaction on Iron Nickel Sulfides
journal, March 2018

  • Bentley, Cameron L.; Andronescu, Corina; Smialkowski, Mathias
  • Angewandte Chemie International Edition, Vol. 57, Issue 15
  • DOI: 10.1002/anie.201712679

Reactivity of Monolayer Chemical Vapor Deposited Graphene Imperfections Studied Using Scanning Electrochemical Microscopy
journal, March 2012

  • Tan, Cen; Rodríguez-López, Joaquín; Parks, Joshua J.
  • ACS Nano, Vol. 6, Issue 4
  • DOI: 10.1021/nn204746n

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets
journal, June 2015

  • Shi, Yi; Wang, Jiong; Wang, Chen
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b01732

Stable methylammonium-intercalated 1T′-MoS 2 for efficient electrocatalytic hydrogen evolution
journal, January 2018

  • Kwak, In Hye; Kwon, Ik Seon; Abbas, Hafiz Ghulam
  • Journal of Materials Chemistry A, Vol. 6, Issue 14
  • DOI: 10.1039/C8TA00700D

Scanning Electrochemical Microscopy of Individual Catalytic Nanoparticles
journal, October 2014


The hydrogen economy
journal, January 2006

  • Crabtree, George W.; Dresselhaus, Mildred S.; V. Buchanan, And Michelle
  • IEEE Engineering Management Review, Vol. 34, Issue 4
  • DOI: 10.1109/emr.2006.261397

Probing the local nature of excitons and plasmons in few-layer MoS2
text, January 2017


Works referencing / citing this record:

High‐Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition‐Metal Dichalcogenide Nanosheets
journal, January 2020

  • Takahashi, Yasufumi; Kobayashi, Yu; Wang, Ziqian
  • Angewandte Chemie, Vol. 132, Issue 9
  • DOI: 10.1002/ange.201912863

High‐Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition‐Metal Dichalcogenide Nanosheets
journal, January 2020

  • Takahashi, Yasufumi; Kobayashi, Yu; Wang, Ziqian
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201912863