DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photonic crystals for nano-light in moiré graphene superlattices

Abstract

Graphene is an atomically thin plasmonic medium that supports highly confined plasmon polaritons, or nano-light, with very low loss. Electronic properties of graphene can be drastically altered when it is laid upon another graphene layer, resulting in a moiré superlattice. The relative twist angle between the two layers is a key tuning parameter of the interlayer coupling in thus-obtained twisted bilayer graphene (TBG). We studied the propagation of plasmon polaritons in TBG by infrared nano-imaging. We discovered that the atomic reconstruction occurring at small twist angles transforms the TBG into a natural plasmon photonic crystal for propagating nano-light. This discovery points to a pathway for controlling nano-light by exploiting quantum properties of graphene and other atomically layered van der Waals materials, eliminating the need for arduous top-down nanofabrication.

Authors:
ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1484842
Grant/Contract Number:  
DOE-BES Energy Frontiers Center on Programmable Quantum Materials DE-SC0019443
Resource Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Name: Science Journal Volume: 362 Journal Issue: 6419; Journal ID: ISSN 0036-8075
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English

Citation Formats

Sunku, S. S., Ni, G. X., Jiang, B. Y., Yoo, H., Sternbach, A., McLeod, A. S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M. M., and Basov, D. N. Photonic crystals for nano-light in moiré graphene superlattices. United States: N. p., 2018. Web. doi:10.1126/science.aau5144.
Sunku, S. S., Ni, G. X., Jiang, B. Y., Yoo, H., Sternbach, A., McLeod, A. S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M. M., & Basov, D. N. Photonic crystals for nano-light in moiré graphene superlattices. United States. https://doi.org/10.1126/science.aau5144
Sunku, S. S., Ni, G. X., Jiang, B. Y., Yoo, H., Sternbach, A., McLeod, A. S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M. M., and Basov, D. N. Thu . "Photonic crystals for nano-light in moiré graphene superlattices". United States. https://doi.org/10.1126/science.aau5144.
@article{osti_1484842,
title = {Photonic crystals for nano-light in moiré graphene superlattices},
author = {Sunku, S. S. and Ni, G. X. and Jiang, B. Y. and Yoo, H. and Sternbach, A. and McLeod, A. S. and Stauber, T. and Xiong, L. and Taniguchi, T. and Watanabe, K. and Kim, P. and Fogler, M. M. and Basov, D. N.},
abstractNote = {Graphene is an atomically thin plasmonic medium that supports highly confined plasmon polaritons, or nano-light, with very low loss. Electronic properties of graphene can be drastically altered when it is laid upon another graphene layer, resulting in a moiré superlattice. The relative twist angle between the two layers is a key tuning parameter of the interlayer coupling in thus-obtained twisted bilayer graphene (TBG). We studied the propagation of plasmon polaritons in TBG by infrared nano-imaging. We discovered that the atomic reconstruction occurring at small twist angles transforms the TBG into a natural plasmon photonic crystal for propagating nano-light. This discovery points to a pathway for controlling nano-light by exploiting quantum properties of graphene and other atomically layered van der Waals materials, eliminating the need for arduous top-down nanofabrication.},
doi = {10.1126/science.aau5144},
journal = {Science},
number = 6419,
volume = 362,
place = {United States},
year = {Thu Dec 06 00:00:00 EST 2018},
month = {Thu Dec 06 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1126/science.aau5144

Citation Metrics:
Cited by: 202 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Plasmons in graphene moiré superlattices
journal, September 2015

  • Ni, G. X.; Wang, H.; Wu, J. S.
  • Nature Materials, Vol. 14, Issue 12
  • DOI: 10.1038/nmat4425

Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
journal, December 2017


Electronic Highways in Bilayer Graphene
journal, August 2011

  • Qiao, Zhenhua; Jung, Jeil; Niu, Qian
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201941f

Plasmonic energy transfer in periodically doped graphene
journal, March 2013


Highly confined low-loss plasmons in graphene–boron nitride heterostructures
journal, December 2014

  • Woessner, Achim; Lundeberg, Mark B.; Gao, Yuanda
  • Nature Materials, Vol. 14, Issue 4
  • DOI: 10.1038/nmat4169

Long-Lived Domain Wall Plasmons in Gapped Bilayer Graphene
journal, November 2017


Probing the ultimate plasmon confinement limits with a van der Waals heterostructure
journal, April 2018

  • Alcaraz Iranzo, David; Nanot, Sébastien; Dias, Eduardo J. C.
  • Science, Vol. 360, Issue 6386
  • DOI: 10.1126/science.aar8438

Strain solitons and topological defects in bilayer graphene
journal, June 2013

  • Alden, J. S.; Tsen, A. W.; Huang, P. Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 28
  • DOI: 10.1073/pnas.1309394110

Infrared Topological Plasmons in Graphene
journal, June 2017


Electronic and plasmonic phenomena at graphene grain boundaries
journal, October 2013


Tuning quantum nonlocal effects in graphene plasmonics
journal, June 2017


Plasmonic crystal defect nanolaser
journal, January 2011

  • Lakhani, Amit M.; Kim, Myung-ki; Lau, Erwin K.
  • Optics Express, Vol. 19, Issue 19
  • DOI: 10.1364/OE.19.018237

Midinfrared Plasmonic Valleytronics in Metagate-Tuned Graphene
journal, August 2018


Topological valley transport at bilayer graphene domain walls
journal, April 2015


Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy
journal, January 2009


Plasmonic Crystal Demultiplexer and Multiports
journal, June 2007

  • Drezet, A.; Koller, Daniel; Hohenau, Andreas
  • Nano Letters, Vol. 7, Issue 6
  • DOI: 10.1021/nl070682p

Experimental observation of Weyl points
journal, July 2015


Fundamental limits to graphene plasmonics
journal, May 2018


Topologically Protected Helical States in Minimally Twisted Bilayer Graphene
journal, July 2018


Direct observation of a widely tunable bandgap in bilayer graphene
journal, June 2009

  • Zhang, Yuanbo; Tang, Tsung-Ta; Girit, Caglar
  • Nature, Vol. 459, Issue 7248
  • DOI: 10.1038/nature08105

Structural and electron diffraction scaling of twisted graphene bilayers
journal, March 2018


Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal
journal, August 2016


Soliton-dependent plasmon reflection at bilayer graphene domain walls
journal, May 2016

  • Jiang, Lili; Shi, Zhiwen; Zeng, Bo
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4653

Topological photonics
journal, October 2014


Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material
journal, August 2017


Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy
journal, October 2009


Optical nano-imaging of gate-tunable graphene plasmons
journal, June 2012

  • Chen, Jianing; Badioli, Michela; Alonso-González, Pablo
  • Nature, Vol. 487, Issue 7405
  • DOI: 10.1038/nature11254

Valley Chern numbers and boundary modes in gapped bilayer graphene
journal, June 2013

  • Zhang, F.; MacDonald, A. H.; Mele, E. J.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 26
  • DOI: 10.1073/pnas.1308853110

Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns
journal, May 2014


Gate-tuning of graphene plasmons revealed by infrared nano-imaging
journal, June 2012


Commensurate–incommensurate transition in graphene on hexagonal boron nitride
journal, April 2014

  • Woods, C. R.; Britnell, L.; Eckmann, A.
  • Nature Physics, Vol. 10, Issue 6
  • DOI: 10.1038/nphys2954

Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene
journal, October 2017


Phase-Resolved Surface Plasmon Interferometry of Graphene
journal, July 2014


Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene
journal, March 2016


Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants
journal, August 2014


Observation of unidirectional backscattering-immune topological electromagnetic states
journal, October 2009

  • Wang, Zheng; Chong, Yidong; Joannopoulos, J. D.
  • Nature, Vol. 461, Issue 7265
  • DOI: 10.1038/nature08293

Polaritons in van der Waals materials
journal, October 2016


Asymmetry gap in the electronic band structure of bilayer graphene
journal, October 2006


Tunneling Plasmonics in Bilayer Graphene
journal, July 2015


Topological Confinement in Bilayer Graphene
journal, January 2008


Twistable electronics with dynamically rotatable heterostructures
journal, August 2018

  • Ribeiro-Palau, Rebeca; Zhang, Changjian; Watanabe, Kenji
  • Science, Vol. 361, Issue 6403
  • DOI: 10.1126/science.aat6981

Generalized spectral method for near-field optical microscopy
journal, February 2016

  • Jiang, B. -Y.; Zhang, L. M.; Castro Neto, A. H.
  • Journal of Applied Physics, Vol. 119, Issue 5
  • DOI: 10.1063/1.4941343