DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode

Abstract

Galvanostatic intermittent titration technique (GITT) - a popular method for characterizing kinetic and transport properties of battery electrodes - is predicated on the proper evaluation of electrode active area. LiNi0.5044Co0.1986Mn0.2970O2 (NCM523) material exhibits a complex morphology in which sub-micron primary particles aggregate to form secondary particle agglomerates. Our work proposes a new active area formulation for primary/secondary particle agglomerate materials to better mimic the morphology of NCM532 electrodes. Furthermore, this formulation is then coupled with macro-homogeneous models to simulate GITT and half-cell performance of NCM523 electrodes. Subsequently, the model results are compared against the experimental results to refine the area formulation. A single parameter, the surface roughness factor, is proposed to mimic the change in interfacial area, diffusivity and exchange current density simultaneously and detailed modeling results are presented to provide valuable insights into the efficacy of the formulation.

Authors:
 [1];  [2];  [2];  [3];  [3];  [1]
  1. Purdue Univ., West Lafayette, IN (United States). School of Mechanical Engineering
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1411322
Report Number(s):
NREL/JA-5400-70071
Journal ID: ISSN 0013-4651; TRN: US1800207
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 13; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 30 DIRECT ENERGY CONVERSION; galvanostatic intermittent titration technique; lithium-ion battery; nickel-cobalt-manganese

Citation Formats

Verma, Ankit, Smith, Kandler, Santhanagopalan, Shriram, Abraham, Daniel, Yao, Koffi Pierre, and Mukherjee, Partha P. Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode. United States: N. p., 2017. Web. doi:10.1149/2.1701713jes.
Verma, Ankit, Smith, Kandler, Santhanagopalan, Shriram, Abraham, Daniel, Yao, Koffi Pierre, & Mukherjee, Partha P. Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode. United States. https://doi.org/10.1149/2.1701713jes
Verma, Ankit, Smith, Kandler, Santhanagopalan, Shriram, Abraham, Daniel, Yao, Koffi Pierre, and Mukherjee, Partha P. Fri . "Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode". United States. https://doi.org/10.1149/2.1701713jes. https://www.osti.gov/servlets/purl/1411322.
@article{osti_1411322,
title = {Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode},
author = {Verma, Ankit and Smith, Kandler and Santhanagopalan, Shriram and Abraham, Daniel and Yao, Koffi Pierre and Mukherjee, Partha P.},
abstractNote = {Galvanostatic intermittent titration technique (GITT) - a popular method for characterizing kinetic and transport properties of battery electrodes - is predicated on the proper evaluation of electrode active area. LiNi0.5044Co0.1986Mn0.2970O2 (NCM523) material exhibits a complex morphology in which sub-micron primary particles aggregate to form secondary particle agglomerates. Our work proposes a new active area formulation for primary/secondary particle agglomerate materials to better mimic the morphology of NCM532 electrodes. Furthermore, this formulation is then coupled with macro-homogeneous models to simulate GITT and half-cell performance of NCM523 electrodes. Subsequently, the model results are compared against the experimental results to refine the area formulation. A single parameter, the surface roughness factor, is proposed to mimic the change in interfacial area, diffusivity and exchange current density simultaneously and detailed modeling results are presented to provide valuable insights into the efficacy of the formulation.},
doi = {10.1149/2.1701713jes},
journal = {Journal of the Electrochemical Society},
number = 13,
volume = 164,
place = {United States},
year = {Fri Nov 03 00:00:00 EDT 2017},
month = {Fri Nov 03 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 72 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes
journal, January 2010

  • Zhu, Yujie; Wang, Chunsheng
  • The Journal of Physical Chemistry C, Vol. 114, Issue 6
  • DOI: 10.1021/jp9113333

Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests
journal, January 2008

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 155, Issue 8
  • DOI: 10.1149/1.2939211

High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method
journal, November 2011


Thermal stability of graphite anode with electrolyte in lithium-ion cells
journal, June 2002


Low temperature performance of graphite and LiNi0.6Co0.2Mn0.2O2 electrodes in Li-ion batteries
journal, August 2014


Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material
journal, November 2014


Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system
journal, August 1994


Probing the Role of Electrode Microstructure in the Lithium-Ion Battery Thermal Behavior
journal, January 2017

  • Chen, Chien-Fan; Verma, Ankit; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0161711jes

Can we detect Li K X-ray in lithium compounds using energy dispersive spectroscopy?: Can we detect Li K X-ray in lithium compounds using EDS?
journal, February 2016

  • Hovington, Pierre; Timoshevskii, Vladimir; Burgess, Simon
  • Scanning, Vol. 38, Issue 6
  • DOI: 10.1002/sca.21302

Depolarized and Fully Active Cathode Based on Li(Ni 0.5 Co 0.2 Mn 0.3 )O 2 Embedded in Carbon Nanotube Network for Advanced Batteries
journal, July 2014

  • Wu, Zhongzhen; Han, Xiaogang; Zheng, Jiaxin
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5018139

Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material
journal, September 2003

  • Yoshio, Masaki; Wang, Hongyu; Fukuda, Kenji
  • Angewandte Chemie, Vol. 115, Issue 35
  • DOI: 10.1002/ange.200351203

Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
journal, January 2011

  • Guo, Meng; Sikha, Godfrey; White, Ralph E.
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3521314

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Degradation of LiNi[sub 0.8]Co[sub 0.2]O[sub 2] Cathode Surfaces in High-Power Lithium-Ion Batteries
journal, January 2002

  • Kostecki, Robert; McLarnon, Frank
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 7
  • DOI: 10.1149/1.1482199

Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

Surface Structure, Morphology, and Stability of Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Cathode Material
journal, April 2017

  • Garcia, Juan C.; Bareño, Javier; Yan, Jianhua
  • The Journal of Physical Chemistry C, Vol. 121, Issue 15
  • DOI: 10.1021/acs.jpcc.7b00896

Thermodynamic and kinetic studies of LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode material for Li-ion batteries using first principles
journal, January 2016

  • Dixit, Mudit; Kosa, Monica; Lavi, Onit Srur
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 9
  • DOI: 10.1039/C5CP07128C

Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) Cathode
journal, January 2016

  • Kasnatscheew, Johannes; Rodehorst, Uta; Streipert, Benjamin
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0461614jes

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Review of models for predicting the cycling performance of lithium ion batteries
journal, June 2006


Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2
journal, April 2012


Adsorption of Gases in Multimolecular Layers
journal, February 1938

  • Brunauer, Stephen; Emmett, P. H.; Teller, Edward
  • Journal of the American Chemical Society, Vol. 60, Issue 2, p. 309-319
  • DOI: 10.1021/ja01269a023

Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes
journal, November 2008

  • Kim, Do Kyung; Muralidharan, P.; Lee, Hyun-Wook
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl8024328

Electrochemical Cycle-Life Characterization of High Energy Lithium-Ion Cells with Thick Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 and Graphite Electrodes
journal, January 2017

  • Leng, Yongjun; Ge, Shanhai; Marple, Dan
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.0451706jes

Li-ion kinetics and polarization effect on the electrochemical performance of Li(Ni1/2Mn1/2)O2
journal, April 2004


High potential performance of Cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery
journal, January 2015


Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li(Ni[sub 1/3]Co[sub 1/3]Mn[sub 1/3])O[sub 2]
journal, January 2004

  • Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 9
  • DOI: 10.1149/1.1775218

Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode
journal, April 2009


A review on the key issues for lithium-ion battery management in electric vehicles
journal, March 2013


Recent Progress in Advanced Materials for Lithium Ion Batteries
journal, January 2013


Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Kinetic Characterization of Single Particles of LiCoO[sub 2] by AC Impedance and Potential Step Methods
journal, January 2001

  • Dokko, K.; Mohamedi, M.; Fujita, Y.
  • Journal of The Electrochemical Society, Vol. 148, Issue 5
  • DOI: 10.1149/1.1359197

Discharge Model for the Lithium Iron-Phosphate Electrode
journal, January 2004

  • Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785012

High Rate Capability of Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Electrode for Li-Ion Batteries
journal, January 2012

  • Wu, Shao-Ling; Zhang, Wei; Song, Xiangyun
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.062204jes

Works referencing / citing this record:

Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating
journal, January 2019

  • Colclasure, Andrew M.; Dunlop, Alison R.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0451908jes

Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model
journal, January 2018

  • Ren, Dongsheng; Smith, Kandler; Guo, Dongxu
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.0661810jes

Porous Electrode Model with Particle Stress Effects for Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 Electrode
journal, January 2019

  • Ko, Jing Ying; Varini, Maria; Klett, Matilda
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0661913jes

Mechanistic Elucidation of Si Particle Morphology on Electrode Performance
journal, January 2019

  • Verma, Ankit; Franco, Alejandro A.; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.0961915jes

Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the Apparent Capacity Loss
journal, January 2019

  • Xu, Shanshan; Chen, Kuan-Hung; Dasgupta, Neil P.
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0991914jes