DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation

Abstract

The growth and characterization of an n‐GaP/i‐GaNP/p + ‐GaP thin film heterojunction synthesized using a gas‐source molecular beam epitaxy (MBE) method, and its application for efficient solar‐driven water oxidation is reported. The TiO 2 /Ni passivated n‐GaP/i‐GaNP/p + ‐GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO 2 /Ni‐coated n‐GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm −2 , leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm −2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm −2 for the coated n‐GaP and n‐GaP/i‐GaNP/p + ‐GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon‐to‐current efficiency (ABPE) of 1.9% while the ABPE of the coated n‐GaP sample is almost zero. Furthermore, the coated n‐GaP/i‐GaNP/p + ‐GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon‐to‐current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low‐bias performance and broad absorption of themore » wide‐bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.« less

Authors:
 [1];  [2];  [3];  [1];  [4];  [5];  [5];  [6]
  1. Department of Electrical and Computer Engineering University of California‐San Diego La Jolla CA 92093 USA
  2. Materials Science and Engineering Program University of California‐San Diego La Jolla CA 92093 USA
  3. School of Materials Science and Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P. R. China, Department of Materials Science and Engineering University of Michigan Ann Arbor MI 48109 USA
  4. Department of Materials Science and Engineering University of Michigan Ann Arbor MI 48109 USA, Department of Chemical Engineering and Materials Science University of California‐Irvine Irvine CA 92697 USA, Department of Physics and Astronomy University of California‐Irvine Irvine CA 92697 USA
  5. Department of Electrical and Computer Engineering University of California‐San Diego La Jolla CA 92093 USA, Materials Science and Engineering Program University of California‐San Diego La Jolla CA 92093 USA
  6. Materials Science and Engineering Program University of California‐San Diego La Jolla CA 92093 USA, Department of Mechanical and Aerospace Engineering University of California‐San Diego La Jolla CA 92093 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1400828
Grant/Contract Number:  
DE‐SC0000957
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 13 Journal Issue: 21; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Kargar, Alireza, Sukrittanon, Supanee, Zhou, Chang, Ro, Yun Goo, Pan, Xiaoqing, Dayeh, Shadi A., Tu, Charles W., and Jin, Sungho. GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation. Germany: N. p., 2017. Web. doi:10.1002/smll.201603574.
Kargar, Alireza, Sukrittanon, Supanee, Zhou, Chang, Ro, Yun Goo, Pan, Xiaoqing, Dayeh, Shadi A., Tu, Charles W., & Jin, Sungho. GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation. Germany. https://doi.org/10.1002/smll.201603574
Kargar, Alireza, Sukrittanon, Supanee, Zhou, Chang, Ro, Yun Goo, Pan, Xiaoqing, Dayeh, Shadi A., Tu, Charles W., and Jin, Sungho. Fri . "GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation". Germany. https://doi.org/10.1002/smll.201603574.
@article{osti_1400828,
title = {GaP/GaNP Heterojunctions for Efficient Solar‐Driven Water Oxidation},
author = {Kargar, Alireza and Sukrittanon, Supanee and Zhou, Chang and Ro, Yun Goo and Pan, Xiaoqing and Dayeh, Shadi A. and Tu, Charles W. and Jin, Sungho},
abstractNote = {The growth and characterization of an n‐GaP/i‐GaNP/p + ‐GaP thin film heterojunction synthesized using a gas‐source molecular beam epitaxy (MBE) method, and its application for efficient solar‐driven water oxidation is reported. The TiO 2 /Ni passivated n‐GaP/i‐GaNP/p + ‐GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO 2 /Ni‐coated n‐GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm −2 , leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm −2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm −2 for the coated n‐GaP and n‐GaP/i‐GaNP/p + ‐GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon‐to‐current efficiency (ABPE) of 1.9% while the ABPE of the coated n‐GaP sample is almost zero. Furthermore, the coated n‐GaP/i‐GaNP/p + ‐GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon‐to‐current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low‐bias performance and broad absorption of the wide‐bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.},
doi = {10.1002/smll.201603574},
journal = {Small},
number = 21,
volume = 13,
place = {Germany},
year = {Fri Mar 31 00:00:00 EDT 2017},
month = {Fri Mar 31 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.201603574

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electron Mobility and Impurity Concentration in n -GaP Crystals Grown by Slow Cooling of Ga Solution
journal, March 1969

  • Toyama, Masaharu; Naito, Makoto; Kasami, Akinobu
  • Japanese Journal of Applied Physics, Vol. 8, Issue 3
  • DOI: 10.1143/JJAP.8.358

Photoelectrochemical cells
journal, November 2001


Wafer bonding of 75 mm diameter GaP to AlGaInP-GaP light-emitting diode wafers
journal, February 2000

  • Tan, I. -H.; Vanderwater, D. A.; Huang, J. -W.
  • Journal of Electronic Materials, Vol. 29, Issue 2
  • DOI: 10.1007/s11664-000-0140-2

Photoelectrochemical Water Splitting
book, January 2013


Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Enhanced conversion efficiency in wide-bandgap GaNP solar cells
journal, October 2015

  • Sukrittanon, S.; Liu, R.; Ro, Y. G.
  • Applied Physics Letters, Vol. 107, Issue 15
  • DOI: 10.1063/1.4933317

Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts
journal, September 2011


Formation of a p–n heterojunction on GaP photocathodes for H 2 production providing an open-circuit voltage of 710 mV
journal, January 2014

  • Malizia, Mauro; Seger, Brian; Chorkendorff, Ib
  • J. Mater. Chem. A, Vol. 2, Issue 19
  • DOI: 10.1039/C4TA00752B

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
journal, September 2014


Macroporous n-GaP in Nonaqueous Regenerative Photoelectrochemical Cells
journal, June 2009

  • Price, Michelle J.; Maldonado, Stephen
  • The Journal of Physical Chemistry C, Vol. 113, Issue 28
  • DOI: 10.1021/jp9044308

High-temperature electron mobilities in LPE-Grown GaP
journal, January 1985

  • Fritz, I. J.; Dawson, L. R.; Osbourn, G. C.
  • Journal of Electronic Materials, Vol. 14, Issue 1
  • DOI: 10.1007/BF02657921

Temperature behavior of the GaNP band gap energy
journal, March 2003


A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting
journal, April 2014

  • Bornoz, Pauline; Abdi, Fatwa F.; Tilley, S. David
  • The Journal of Physical Chemistry C, Vol. 118, Issue 30
  • DOI: 10.1021/jp500441h

Stable photoelectrochemical cells for the splitting of water
journal, April 1977

  • Ohashi, K.; Mccann, J.; Bockris, J. O'M.
  • Nature, Vol. 266, Issue 5603
  • DOI: 10.1038/266610a0

A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
journal, May 2013

  • Liu, Chong; Tang, Jinyao; Chen, Hao Ming
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl401615t

Electrochemically etched triangular pore arrays on GaP and their photoelectrochemical properties from water oxidation
journal, July 2014


Blending Cr 2 O 3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting
journal, August 2015

  • Gong, Ming; Zhou, Wu; Kenney, Michael James
  • Angewandte Chemie, Vol. 127, Issue 41
  • DOI: 10.1002/ange.201504815

Sputtered NiO x Films for Stabilization of p + n-InP Photoanodes for Solar-Driven Water Oxidation
journal, March 2015

  • Sun, Ke; Kuang, Yanjin; Verlage, Erik
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402276

Surfactant-Free, Large-Scale, Solution–Liquid–Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction
journal, December 2011

  • Sun, Jianwei; Liu, Chong; Yang, Peidong
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja2083398

Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis
journal, June 2016


Zn-Doped p-Type Gallium Phosphide Nanowire Photocathodes from a Surfactant-Free Solution Synthesis
journal, September 2012

  • Liu, Chong; Sun, Jianwei; Tang, Jinyao
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl3028729

Enabling unassisted solar water splitting by iron oxide and silicon
journal, June 2015

  • Jang, Ji-Wook; Du, Chun; Ye, Yifan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8447

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Artificial Photosynthesis for Sustainable Fuel and Chemical Production
journal, January 2015

  • Kim, Dohyung; Sakimoto, Kelsey K.; Hong, Dachao
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201409116

Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: GaP(100) Photoelectrodes and Surface Modification
journal, August 2012

  • Kaiser, Bernhard; Fertig, Dominic; Ziegler, Jürgen
  • ChemPhysChem, Vol. 13, Issue 12
  • DOI: 10.1002/cphc.201200432

Efficient water reduction with gallium phosphide nanowires
journal, July 2015

  • Standing, Anthony; Assali, Simone; Gao, Lu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8824

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Nanodome Solar Cells with Efficient Light Management and Self-Cleaning
journal, June 2010

  • Zhu, Jia; Hsu, Ching-Mei; Yu, Zongfu
  • Nano Letters, Vol. 10, Issue 6
  • DOI: 10.1021/nl9034237

Nanowire/nanotube array tandem cells for overall solar neutral water splitting
journal, January 2016


Photoelectrochemical Behavior of n-Type GaAs(100) Electrodes Coated by a Single Layer of Graphene
journal, March 2016

  • Yang, Fan; Nielander, Adam C.; Grimm, Ronald L.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 13
  • DOI: 10.1021/acs.jpcc.6b00232

Stacking faults and twins in gallium phosphide layers grown on silicon
journal, March 2002


An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

pn photoelectrolysis cells
journal, August 1976

  • Nozik, A. J.
  • Applied Physics Letters, Vol. 29, Issue 3
  • DOI: 10.1063/1.89004

Powering the planet with solar fuel
journal, April 2009


The Absorption Spectrum of Gallium Phosphide between 2 and 3 eV
journal, January 1966


Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
journal, January 2011

  • Boettcher, Shannon W.; Warren, Emily L.; Putnam, Morgan C.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1216-1219
  • DOI: 10.1021/ja108801m