DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats

Abstract

Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g-1 (3,500 mA h g$$-1\atop{Si}$$) at 0.1 C and 489 mAh g-1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm-2 and 750 mA h cm-3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO2-based cathode has a high specific energy density of 270 Wh kg-1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiOx surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats

Authors:
 [1];  [2];  [2];  [1];  [1];  [3];  [2]; ORCiD logo [1]
  1. Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
Publication Date:
Research Org.:
Vanderbilt Univ., Nashville, TN (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); Celgard LLC, Charlotte, NC (United States); Arkema Inc, Colombes (France)
OSTI Identifier:
1350938
Alternate Identifier(s):
OSTI ID: 1401055; OSTI ID: 1435795; OSTI ID: 1476452; OSTI ID: 1524166
Grant/Contract Number:  
EE0007215; AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 10; Journal Issue: 8; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 77 NANOSCIENCE AND NANOTECHNOLOGY; Areal Capacity; Li-ion Battery; Nanostructures; Silicon; Volumetric Capacity

Citation Formats

Self, Ethan C., Naguib, Michael, Ruther, Rose E., McRen, Emily C., Wycisk, Ryszard, Liu, Gao, Nanda, Jagjit, and Pintauro, Peter N. High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats. United States: N. p., 2017. Web. doi:10.1002/cssc.201700096.
Self, Ethan C., Naguib, Michael, Ruther, Rose E., McRen, Emily C., Wycisk, Ryszard, Liu, Gao, Nanda, Jagjit, & Pintauro, Peter N. High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats. United States. https://doi.org/10.1002/cssc.201700096
Self, Ethan C., Naguib, Michael, Ruther, Rose E., McRen, Emily C., Wycisk, Ryszard, Liu, Gao, Nanda, Jagjit, and Pintauro, Peter N. Fri . "High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats". United States. https://doi.org/10.1002/cssc.201700096. https://www.osti.gov/servlets/purl/1350938.
@article{osti_1350938,
title = {High Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats},
author = {Self, Ethan C. and Naguib, Michael and Ruther, Rose E. and McRen, Emily C. and Wycisk, Ryszard and Liu, Gao and Nanda, Jagjit and Pintauro, Peter N.},
abstractNote = {Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g-1 (3,500 mA h g$-1\atop{Si}$) at 0.1 C and 489 mAh g-1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm-2 and 750 mA h cm-3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO2-based cathode has a high specific energy density of 270 Wh kg-1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiOx surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats},
doi = {10.1002/cssc.201700096},
journal = {ChemSusChem},
number = 8,
volume = 10,
place = {United States},
year = {Fri Mar 24 00:00:00 EDT 2017},
month = {Fri Mar 24 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles
journal, October 2013

  • Nitta, Naoki; Yushin, Gleb
  • Particle & Particle Systems Characterization, Vol. 31, Issue 3
  • DOI: 10.1002/ppsc.201300231

Reversible High-Capacity Si Nanocomposite Anodes for Lithium-ion Batteries Enabled by Molecular Layer Deposition
journal, December 2013

  • Piper, Daniela Molina; Travis, Jonathan J.; Young, Matthias
  • Advanced Materials, Vol. 26, Issue 10
  • DOI: 10.1002/adma.201304714

Exceptional Performance of TiNb 2 O 7 Anode in All One-Dimensional Architecture by Electrospinning
journal, May 2014

  • Jayaraman, Sundaramurthy; Aravindan, Vanchiappan; Suresh Kumar, Palaniswamy
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501464d

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Golden-Toad Eggs toward a Binder-Free, High-Rate, and Flexible Electrode
journal, June 2016


Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes
journal, January 2011

  • Hu, Liangbing; Wu, Hui; Hong, Seung Sae
  • Chemical Communications, Vol. 47, Issue 1, p. 367-369
  • DOI: 10.1039/C0CC02078H

Well-constructed silicon-based materials as high-performance lithium-ion battery anodes
journal, January 2016


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Electrospun V2O5 Nanostructures with Controllable Morphology as High-Performance Cathode Materials for Lithium-Ion Batteries
journal, June 2012

  • Wang, Heng-guo; Ma, De-long; Huang, Yun
  • Chemistry - A European Journal, Vol. 18, Issue 29
  • DOI: 10.1002/chem.201200434

Development of Li-Ion Rechargeable Battery Using SnC 2 O 4 -Coated Si Anode Material and Its Safety Evaluation
journal, January 2013

  • Kataoka, Riki; Mukai, Takashi; Yoshizawa, Akihiro
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.034310jes

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Soft silicon anodes for lithium ion batteries
journal, January 2014

  • Xiao, Qizhen; Zhang, Qing; Fan, Yu
  • Energy & Environmental Science, Vol. 7, Issue 7
  • DOI: 10.1039/c4ee00768a

High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries
journal, January 2005

  • Buqa, Hilmi; Goers, Dietrich; Holzapfel, Michael
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1851055

Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
journal, October 2010

  • Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100871y

LiCoO2-Based Fiber Cathodes for Electrospun Full Cell Li-ion Batteries
journal, October 2016


Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes
journal, March 2010

  • Chan, Candace K.; Patel, Reken N.; O’Connell, Michael J.
  • ACS Nano, Vol. 4, Issue 3
  • DOI: 10.1021/nn901409q

General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance
journal, October 2012

  • Wang, Hengguo; Ma, Delong; Huang, Xiaolei
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00701

Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries
journal, September 2013


Deficiencies of Chemically Reduced Graphene as Electrode in Full Li-Ion Cells
journal, May 2015


Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries
journal, July 2011


All-Nanowire Based Li-Ion Full Cells Using Homologous Mn 2 O 3 and LiMn 2 O 4
journal, January 2014

  • Wang, Yuhang; Wang, Yehua; Jia, Dingsi
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4047834

Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
journal, July 2011

  • Liu, Nian; Hu, Liangbing; McDowell, Matthew T.
  • ACS Nano, Vol. 5, Issue 8
  • DOI: 10.1021/nn2017167

Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance
journal, January 2015

  • Wang, Heng-Guo; Yuan, Shuang; Ma, De-Long
  • Energy & Environmental Science, Vol. 8, Issue 6
  • DOI: 10.1039/C4EE03912B

Deformation and stress in electrode materials for Li-ion batteries
journal, June 2014


Cable-Type Water-Survivable Flexible Li-O 2 Battery
journal, May 2016


High-Rate-Capable Lithium-Ion Battery Based on Surface-Modified Natural Graphite Anode and Substituted Spinel Cathode for Hybrid Electric Vehicles
journal, January 2005

  • Kottegoda, Iresha R. M.; Kadoma, Yoshihiro; Ikuta, Hiromasa
  • Journal of The Electrochemical Society, Vol. 152, Issue 8
  • DOI: 10.1149/1.1948987

Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithium-Ion Batteries
journal, May 2011

  • Caballero, Alvaro; Hernán, Lourdes; Morales, Julián
  • ChemSusChem, Vol. 4, Issue 5
  • DOI: 10.1002/cssc.201000398

Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries
journal, August 2014

  • Rios, Orlando; Martha, Surendra K.; McGuire, Michael A.
  • Energy Technology, Vol. 2, Issue 9-10
  • DOI: 10.1002/ente.201402049

Improved stability of TiO2 modified Ru85Se15/C electrocatalyst for proton exchange membrane fuel cells
journal, December 2010


High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning
journal, January 2016

  • Self, Ethan C.; McRen, Emily C.; Pintauro, Peter N.
  • ChemSusChem, Vol. 9, Issue 2
  • DOI: 10.1002/cssc.201501393

A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators
journal, January 2013

  • Aravindan, Vanchiappan; Sundaramurthy, Jayaraman; Kumar, Palaniswamy Suresh
  • Nanoscale, Vol. 5, Issue 21
  • DOI: 10.1039/c3nr04486f

Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries
journal, January 2010

  • Ji, Liwen; Zhang, Xiangwu
  • Energy Environ. Sci., Vol. 3, Issue 1
  • DOI: 10.1039/B912188A

Conductive Polymer and Silicon Composite Secondary Particles for a High Area-Loading Negative Electrode
journal, January 2013

  • Xun, Shidi; Xiang, Bin; Minor, Andrew
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.034309jes

Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material
journal, July 2013


High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium–oxygen batteries
journal, January 2012

  • Zhang, Leilei; Zhang, Xinbo; Wang, Zhongli
  • Chemical Communications, Vol. 48, Issue 61
  • DOI: 10.1039/c2cc33933a

A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance
journal, April 2013

  • de Guzman, Rhet C.; Yang, Jinho; Cheng, Mark Ming-Cheng
  • Journal of Materials Science, Vol. 48, Issue 14
  • DOI: 10.1007/s10853-012-7094-7

Electrospun titania-based fibers for high areal capacity Li-ion battery anodes
journal, May 2015


Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery
journal, May 2004


Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design
journal, October 2014

  • Zhao, Hui; Wang, Zhihui; Lu, Peng
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503490h

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes
journal, September 2011

  • Liu, Gao; Xun, Shidi; Vukmirovic, Nenad
  • Advanced Materials, Vol. 23, Issue 40, p. 4679-4683
  • DOI: 10.1002/adma.201102421

Evolution of Strategies for Modern Rechargeable Batteries
journal, June 2012

  • Goodenough, John B.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2002705

Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries
journal, January 2015

  • Wu, Mingyan; Song, Xiangyun; Liu, Xiaosong
  • Journal of Materials Chemistry A, Vol. 3, Issue 7
  • DOI: 10.1039/C4TA06594H

Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries
journal, February 2015

  • Park, Sang-Jae; Zhao, Hui; Ai, Guo
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja511181p

Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes
journal, January 2012

  • Wu, Hui; Zheng, Guangyuan; Liu, Nian
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203967r

Analysis of the Deterioration Mechanism of Si Electrode as a Li-Ion Battery Anode Using Raman Microspectroscopy
journal, January 2015

  • Shimizu, Masahiro; Usui, Hiroyuki; Suzumura, Takahiro
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp5121965

Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers
journal, February 2015

  • Favors, Zachary; Bay, Hamed Hosseini; Mutlu, Zafer
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08246

Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes
journal, June 2014

  • Li, Juchuan; Dudney, Nancy J.; Nanda, Jagjit
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 13
  • DOI: 10.1021/am5009419

Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries
journal, February 2010

  • Bridel, J. -S.; Azaïs, T.; Morcrette, M.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902688w

Lithium-iron battery: Fe2O3 anode versus LiFePO4 cathode
journal, March 2011


In Situ Atomic Force Microscopy Study of Initial Solid Electrolyte Interphase Formation on Silicon Electrodes for Li-Ion Batteries
journal, April 2014

  • Tokranov, Anton; Sheldon, Brian W.; Li, Chunzeng
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9
  • DOI: 10.1021/am500363t

Pie-like electrode design for high-energy density lithium–sulfur batteries
journal, November 2015

  • Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9850

Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


Role of Surface Functionality in the Electrochemical Performance of Silicon Nanowire Anodes for Rechargeable Lithium Batteries
journal, April 2014

  • Zhou, Hui; Nanda, Jagjit; Martha, Surendra K.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 10
  • DOI: 10.1021/am500855a

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode
journal, January 2009

  • Nanda, Jagjit; Datta, Moni Kanchan; Remillard, Jeffrey T.
  • Electrochemistry Communications, Vol. 11, Issue 1
  • DOI: 10.1016/j.elecom.2008.11.006

A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


A Li-ion battery using LiMn2O4 cathode and MnOx/C anode
journal, December 2013


Lithium Titanate Aerogel for Advanced Lithium-Ion Batteries
journal, April 2012

  • Maloney, Ryan P.; Kim, Hyun Joong; Sakamoto, Jeffrey S.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 5
  • DOI: 10.1021/am3002742

3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li-Ion Batteries
journal, August 2014


A Disordered Carbon as a Novel Anode Material in Lithium-Ion Cells
journal, March 2005


In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium
journal, August 2007

  • Pollak, Elad; Salitra, Gregory; Baranchugov, Valentina
  • The Journal of Physical Chemistry C, Vol. 111, Issue 30
  • DOI: 10.1021/jp0729563

A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery
journal, January 2013

  • Verrelli, Roberta; Hassoun, Jusef; Farkas, Attila
  • Journal of Materials Chemistry A, Vol. 1, Issue 48
  • DOI: 10.1039/c3ta13960c

Micro-Raman stress characterization of polycrystalline silicon films grown at high temperature
journal, September 2004

  • Teixeira, R. C.; Doi, I.; Zakia, M. B. P.
  • Materials Science and Engineering: B, Vol. 112, Issue 2-3
  • DOI: 10.1016/j.mseb.2004.05.025

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Works referencing / citing this record:

Densification by Compaction as an Effective Low-Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co 3 O 4 Sponge
journal, March 2018

  • Chen, Yijun; Wang, Yunsong; Wang, Zhipeng
  • Advanced Energy Materials, Vol. 8, Issue 19
  • DOI: 10.1002/aenm.201702981

General Airbrush-Spraying/Electrospinning Strategy for Ultrahigh Areal-Capacity LiFePO 4 -Based Cathodes
journal, June 2018