DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recent Arctic tundra fire initiates widespread thermokarst development

Abstract

Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [2]
  1. United States Geological Survey (USGS), Anchorage, AK (United States). Alaska Science Center
  2. Univ. of Alaska, Fairbanks, AK (United States)
  3. Bureau of Land Management Alaska, Anchorage, AK (United States)
  4. Chinese University of Hong Kong (CUHK), Hong Kong (China)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1335327
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Jones, Benjamin M., Grosse, Guido, Arp, Christopher D., Miller, Eric, Liu, Lin, Hayes, Daniel J., and Larsen, Christopher F. Recent Arctic tundra fire initiates widespread thermokarst development. United States: N. p., 2015. Web. doi:10.1038/srep15865.
Jones, Benjamin M., Grosse, Guido, Arp, Christopher D., Miller, Eric, Liu, Lin, Hayes, Daniel J., & Larsen, Christopher F. Recent Arctic tundra fire initiates widespread thermokarst development. United States. https://doi.org/10.1038/srep15865
Jones, Benjamin M., Grosse, Guido, Arp, Christopher D., Miller, Eric, Liu, Lin, Hayes, Daniel J., and Larsen, Christopher F. Thu . "Recent Arctic tundra fire initiates widespread thermokarst development". United States. https://doi.org/10.1038/srep15865. https://www.osti.gov/servlets/purl/1335327.
@article{osti_1335327,
title = {Recent Arctic tundra fire initiates widespread thermokarst development},
author = {Jones, Benjamin M. and Grosse, Guido and Arp, Christopher D. and Miller, Eric and Liu, Lin and Hayes, Daniel J. and Larsen, Christopher F.},
abstractNote = {Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.},
doi = {10.1038/srep15865},
journal = {Scientific Reports},
number = ,
volume = 5,
place = {United States},
year = {Thu Oct 29 00:00:00 EDT 2015},
month = {Thu Oct 29 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 122 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Response of boreal ecosystems to varying modes of permafrost degradation
journal, September 2005

  • Jorgenson, M. T.; Osterkamp, T. E.
  • Canadian Journal of Forest Research, Vol. 35, Issue 9
  • DOI: 10.1139/x05-153

Patterns of permafrost formation and degradation in relation to climate and ecosystems
journal, January 2007

  • Shur, Y. L.; Jorgenson, M. T.
  • Permafrost and Periglacial Processes, Vol. 18, Issue 1
  • DOI: 10.1002/ppp.582

Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska
journal, December 2002

  • Yoshikawa, Kenji; Bolton, William R.; Romanovsky, Vladimir E.
  • Journal of Geophysical Research, Vol. 108, Issue D1
  • DOI: 10.1029/2001JD000438

Wetland succession in a permafrost collapse: interactions between fire and thermokarst
journal, January 2008


Thermal state of permafrost in North America: a contribution to the international polar year
journal, April 2010

  • Smith, S. L.; Romanovsky, V. E.; Lewkowicz, A. G.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.690

Edaphic and microclimatic controls over permafrost response to fire in interior Alaska
journal, July 2013


Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, U.S.A.
journal, August 2000


Identification of unrecognized tundra fire events on the north slope of Alaska: UNRECOGNIZED TUNDRA FIRES
journal, July 2013

  • Jones, Benjamin M.; Breen, Amy L.; Gaglioti, Benjamin V.
  • Journal of Geophysical Research: Biogeosciences, Vol. 118, Issue 3
  • DOI: 10.1002/jgrg.20113

The response of Arctic vegetation and soils following an unusually severe tundra fire
journal, August 2013

  • Bret-Harte, M. Syndonia; Mack, Michelle C.; Shaver, Gaius R.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 368, Issue 1624
  • DOI: 10.1098/rstb.2012.0490

Tundra Fire and Vegetation Change along a Hillslope on the Seward Peninsula, Alaska, U.S.A
journal, February 2004


The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing
journal, December 2012


Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska?
journal, December 2010


InSAR detects increase in surface subsidence caused by an Arctic tundra fire
journal, June 2014

  • Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.
  • Geophysical Research Letters, Vol. 41, Issue 11
  • DOI: 10.1002/2014GL060533

The carbon budget of the northern cryosphere region
journal, October 2010

  • McGuire, A. David; Macdonald, Robie W.; Schuur, Edward AG
  • Current Opinion in Environmental Sustainability, Vol. 2, Issue 4
  • DOI: 10.1016/j.cosust.2010.05.003

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Fire, Global Warming, and the Carbon Balance of Boreal Forests
journal, May 1995

  • Kasischke, Eric S.; Christensen, N. L.; Stocks, Brian J.
  • Ecological Applications, Vol. 5, Issue 2
  • DOI: 10.2307/1942034

The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis
journal, January 2007

  • Balshi, M. S.; McGuire, A. D.; Zhuang, Q.
  • Journal of Geophysical Research, Vol. 112, Issue G2
  • DOI: 10.1029/2006JG000380

Fire as the dominant driver of central Canadian boreal forest carbon balance
journal, November 2007

  • Bond-Lamberty, Ben; Peckham, Scott D.; Ahl, Douglas E.
  • Nature, Vol. 450, Issue 7166
  • DOI: 10.1038/nature06272

Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century
journal, June 2009


Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
journal, December 2010

  • Turetsky, Merritt R.; Kane, Evan S.; Harden, Jennifer W.
  • Nature Geoscience, Vol. 4, Issue 1
  • DOI: 10.1038/ngeo1027

Current disturbance and the diminishing peatland carbon sink
journal, January 2002


Carbon loss from an unprecedented Arctic tundra wildfire
journal, July 2011

  • Mack, Michelle C.; Bret-Harte, M. Syndonia; Hollingsworth, Teresa N.
  • Nature, Vol. 475, Issue 7357
  • DOI: 10.1038/nature10283

Vulnerability of high-latitude soil organic carbon in North America to disturbance
journal, January 2011

  • Grosse, Guido; Harden, Jennifer; Turetsky, Merritt
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JG001507

The Impact of Boreal Forest Fire on Climate Warming
journal, November 2006


Is the northern high-latitude land-based CO 2 sink weakening? : THE HIGH-LATITUDE CO
journal, August 2011

  • Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.
  • Global Biogeochemical Cycles, Vol. 25, Issue 3
  • DOI: 10.1029/2010GB003813

Seasonal variations of the nocturnal mesospheric Na and Fe layers at 30°N: SEASONAL VARIATIONS OF MESOSPHERIC NA AND FE LAYERS
journal, January 2009

  • Yi, Fan; Yu, Changming; Zhang, Shaodong
  • Journal of Geophysical Research: Atmospheres, Vol. 114, Issue D1
  • DOI: 10.1029/2008JD010344

The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate
journal, August 2013


Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements
journal, January 2010

  • Hu, Yongxiang; Rodier, Sharon; Xu, Kuan-man
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012384

Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska
journal, January 2015

  • Chipman, M. L.; Hudspith, V.; Higuera, P. E.
  • Biogeosciences Discussions, Vol. 12, Issue 3
  • DOI: 10.5194/bgd-12-3177-2015

Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
journal, February 2004

  • Stow, Douglas A.; Hope, Allen; McGuire, David
  • Remote Sensing of Environment, Vol. 89, Issue 3
  • DOI: 10.1016/j.rse.2003.10.018

Fire Behavior, Weather, and Burn Severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska
journal, August 2009

  • Jones, Benjamin M.; Kolden, Crystal A.; Jandt, Randi
  • Arctic, Antarctic, and Alpine Research, Vol. 41, Issue 3
  • DOI: 10.1657/1938-4246-41.3.309

Mapping Wildfire Burn Severity in the Arctic Tundra from Downsampled MODIS Data
journal, February 2013


Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest: Contrasting soil thermal responses
journal, February 2015

  • Jiang, Yueyang; Rocha, Adrian V.; O'Donnell, Jonathan A.
  • Journal of Geophysical Research: Earth Surface, Vol. 120, Issue 2
  • DOI: 10.1002/2014JF003180

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska
journal, February 2014

  • Raynolds, Martha K.; Walker, Donald A.; Ambrosius, Kenneth J.
  • Global Change Biology, Vol. 20, Issue 4
  • DOI: 10.1111/gcb.12500

Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR
journal, November 2013


Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications
journal, December 2011

  • Higuera, Philip E.; Chipman, Melissa L.; Barnes, Jennifer L.
  • Ecological Applications, Vol. 21, Issue 8
  • DOI: 10.1890/11-0387.1

Wetland succession in a permafrost collapse: interactions between fire and thermokarst
journal, January 2007

  • Myers-Smith, I. H.; Harden, J. W.; Wilmking, M.
  • Biogeosciences Discussions, Vol. 4, Issue 6
  • DOI: 10.5194/bgd-4-4507-2007

Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, U.S.A.
journal, August 2000

  • Osterkamp, T. E.; Viereck, L.; Shur, Y.
  • Arctic, Antarctic, and Alpine Research, Vol. 32, Issue 3
  • DOI: 10.2307/1552529

Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska
journal, January 2015


Carbon loss from an unprecedented Arctic tundra wildfire
journal, July 2011

  • Mack, Michelle C.; Bret-Harte, M. Syndonia; Hollingsworth, Teresa N.
  • Nature, Vol. 475, Issue 7357
  • DOI: 10.1038/nature10283

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

The Impact of Boreal Forest Fire on Climate Warming
journal, November 2006


Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska
journal, January 2015


Works referencing / citing this record:

The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska
journal, December 2017

  • Genet, Hélène; He, Yujie; Lyu, Zhou
  • Ecological Applications, Vol. 28, Issue 1
  • DOI: 10.1002/eap.1641

Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site
journal, August 2017


Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain
journal, November 2016


Using Persistent Scatterer Interferometry to Map and Quantify Permafrost Thaw Subsidence: A Case Study of Eboling Mountain on the Qinghai-Tibet Plateau
journal, October 2018

  • Chen, Jie; Liu, Lin; Zhang, Tingjun
  • Journal of Geophysical Research: Earth Surface, Vol. 123, Issue 10
  • DOI: 10.1029/2018jf004618

Plant Uptake Offsets Silica Release From a Large Arctic Tundra Wildfire
journal, September 2019

  • Carey, Joanna C.; Abbott, Benjamin W.; Rocha, Adrian V.
  • Earth's Future, Vol. 7, Issue 9
  • DOI: 10.1029/2019ef001149

Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic
journal, December 2018


Revealing biogeochemical signatures of Arctic landscapes with river chemistry
journal, September 2019


An overview of ABoVE airborne campaign data acquisitions and science opportunities
journal, July 2019

  • Miller, C. E.; Griffith, P. C.; Goetz, S. J.
  • Environmental Research Letters, Vol. 14, Issue 8
  • DOI: 10.1088/1748-9326/ab0d44

Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska
journal, January 2020

  • Frost, Gerald V.; Loehman, Rachel A.; Saperstein, Lisa B.
  • Environmental Research Letters, Vol. 15, Issue 2
  • DOI: 10.1088/1748-9326/ab5f49

Spatiotemporal remote sensing of ecosystem change and causation across Alaska
journal, May 2018

  • Pastick, Neal J.; Jorgenson, M. Torre; Goetz, Scott J.
  • Global Change Biology, Vol. 25, Issue 3
  • DOI: 10.1111/gcb.14279

UAV photogrammetry for mapping vegetation in the low-Arctic
journal, September 2016

  • Fraser, Robert H.; Olthof, Ian; Lantz, Trevor C.
  • Arctic Science, Vol. 2, Issue 3
  • DOI: 10.1139/as-2016-0008

Assessment of LiDAR and Spectral Techniques for High-Resolution Mapping of Sporadic Permafrost on the Yukon-Kuskokwim Delta, Alaska
journal, February 2018

  • Whitley, Matthew; Frost, Gerald; Jorgenson, M.
  • Remote Sensing, Vol. 10, Issue 2
  • DOI: 10.3390/rs10020258

Modeling Wildfire-Induced Permafrost Deformation in an Alaskan Boreal Forest Using InSAR Observations
journal, March 2018

  • Eshqi Molan, Yusuf; Kim, Jin-Woo; Lu, Zhong
  • Remote Sensing, Vol. 10, Issue 3
  • DOI: 10.3390/rs10030405

Climate Sensitivity of High Arctic Permafrost Terrain Demonstrated by Widespread Ice-Wedge Thermokarst on Banks Island
journal, June 2018

  • Fraser, Robert; Kokelj, Steven; Lantz, Trevor
  • Remote Sensing, Vol. 10, Issue 6
  • DOI: 10.3390/rs10060954

Drivers of Landscape Changes in Coastal Ecosystems on the Yukon-Kuskokwim Delta, Alaska
journal, August 2018

  • Jorgenson, M.; Frost, Gerald; Dissing, Dorte
  • Remote Sensing, Vol. 10, Issue 8
  • DOI: 10.3390/rs10081280

Regional Patterns and Asynchronous Onset of Ice-Wedge Degradation since the Mid-20th Century in Arctic Alaska
journal, August 2018

  • Frost, Gerald; Christopherson, Tracy; Jorgenson, M.
  • Remote Sensing, Vol. 10, Issue 8
  • DOI: 10.3390/rs10081312

Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery
journal, September 2018

  • Zhang, Weixing; Witharana, Chandi; Liljedahl, Anna
  • Remote Sensing, Vol. 10, Issue 9
  • DOI: 10.3390/rs10091487

Permafrost Terrain Dynamics and Infrastructure Impacts Revealed by UAV Photogrammetry and Thermal Imaging
journal, November 2018

  • van der Sluijs, Jurjen; Kokelj, Steven; Fraser, Robert
  • Remote Sensing, Vol. 10, Issue 11
  • DOI: 10.3390/rs10111734

Using Long-Term SAR Backscatter Data to Monitor Post-Fire Vegetation Recovery in Tundra Environment
journal, September 2019

  • Zhou, Zhiwei; Liu, Lin; Jiang, Liming
  • Remote Sensing, Vol. 11, Issue 19
  • DOI: 10.3390/rs11192230

Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
journal, January 2018

  • Loranty, Michael M.; Abbott, Benjamin W.; Blok, Daan
  • Biogeosciences, Vol. 15, Issue 17
  • DOI: 10.5194/bg-15-5287-2018

Presence of rapidly degrading permafrost plateaus in south-central Alaska
journal, January 2016

  • Jones, Benjamin M.; Baughman, Carson A.; Romanovsky, Vladimir E.
  • The Cryosphere, Vol. 10, Issue 6
  • DOI: 10.5194/tc-10-2673-2016

Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals
journal, January 2018


Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic
text, January 2019


Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals
posted_content, August 2017


Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic
journal, December 2018


Revealing biogeochemical signatures of Arctic landscapes with river chemistry
journal, September 2019