skip to main content

DOE PAGESDOE PAGES

Title: Superior magnetic and mechanical property of MnFe3N driven by electron correlation and lattice anharmonicity

Manganese-substitution-doped iron nitride MnFe3N holds great promise for applications in high-density magnetic recording and spintronic devices. However, existing theory contradicts experimental results on the structural and magnetic stability of MnFe3N, and the underlying mechanisms remain elusive. Here we demonstrate by first-principles calculations that the ferromagnetic state with enhanced magnetization in MnFe3N is driven by the electron correlation effect not previously considered. We further reveal a large nonlinear shear plasticity, which produces an unexpectedly high shear strength in MnFe3N despite its initial ductile nature near the equilibrium structure. Moreover, we identify strong lattice anharmonicity that plays a pivotal role in stabilizing MnFe3N under high pressures at room temperature. These remarkable properties stem from the intriguing bonding nature of the parent compound Fe4N. Lastly, our results explain experimental results and offer insights into the fundamental mechanisms for the superior magnetic and mechanical properties of MnFe3N.
Authors:
 [1] ;  [1] ;  [2]
  1. Shanghai Jiao Tong Univ., Shanghai (China)
  2. Univ. of Nevada, Las Vegas, NV (United States)
Publication Date:
OSTI Identifier:
1332490
Grant/Contract Number:
NA0001982
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 6; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Univ. of Nevada, Las Vegas, NV (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY