skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on August 2, 2017

Title: Conducting interface in oxide homojunction: Understanding of superior properties in black TiO2

Black TiO2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO2 nanoparticles. Metallic conduction is achieved at the crystalline–amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the enhanced electron transport of black TiO2. As a result, this work not only achieves an unprecedented understanding of black TiO2 but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
1331278
Report Number(s):
LA-UR--16-22153
Journal ID: ISSN 1530-6984
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 16; Journal Issue: 9; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE material science; black TiO2; enhanced electron transport; interfacial engineering; metallic conduction; oxide interfaces; thin films