skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on October 19, 2017

Title: Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

Cs2LiLaBr6:Ce3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.
Authors:
 [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1330085
Report Number(s):
LA-UR--16-24271
Journal ID: ISSN 0168-9002; TRN: US1601859
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Name: Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY atomic and nuclear physics; elpasolite; scintillators; pulse shape discrimination; alpha background; actinium contamination; alpha quenching