DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

Abstract

The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

Authors:
 [1];  [2];  [3];  [4];  [5];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Univ. of New Mexico, Albuquerque, NM (United States)
  4. Univ. of California, Santa Cruz, CA (United States)
  5. Florida State Univ., Tallahassee, FL (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1329869
Alternate Identifier(s):
OSTI ID: 1226676
Report Number(s):
LA-UR-15-24648
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ICF; plasma; viscosity; plasma transport

Citation Formats

Vold, Erik Lehman, Joglekar, Archis S., Ortega, Mario I., Moll, Ryan, Fenn, Daniel, and Molvig, Kim. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations. United States: N. p., 2015. Web. doi:10.1063/1.4935906.
Vold, Erik Lehman, Joglekar, Archis S., Ortega, Mario I., Moll, Ryan, Fenn, Daniel, & Molvig, Kim. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations. United States. https://doi.org/10.1063/1.4935906
Vold, Erik Lehman, Joglekar, Archis S., Ortega, Mario I., Moll, Ryan, Fenn, Daniel, and Molvig, Kim. Fri . "Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations". United States. https://doi.org/10.1063/1.4935906. https://www.osti.gov/servlets/purl/1329869.
@article{osti_1329869,
title = {Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations},
author = {Vold, Erik Lehman and Joglekar, Archis S. and Ortega, Mario I. and Moll, Ryan and Fenn, Daniel and Molvig, Kim},
abstractNote = {The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.},
doi = {10.1063/1.4935906},
journal = {Physics of Plasmas},
number = 11,
volume = 22,
place = {United States},
year = {Fri Nov 20 00:00:00 EST 2015},
month = {Fri Nov 20 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Physics of Inertial Fusion
book, January 2004


Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system
journal, May 1996

  • Soures, J. M.; McCrory, R. L.; Verdon, C. P.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871662

Nonlinear Structure of the Diffusing Gas-Metal Interface in a Thermonuclear Plasma
journal, October 2014


The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database
journal, May 2011

  • Amendt, Peter; Wilks, S. C.; Bellei, C.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3577577

A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Revisiting Nonlocal Electron-Energy Transport in Inertial-Fusion Conditions
journal, February 2007


Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets
journal, January 2014

  • Marocchino, A.; Atzeni, S.; Schiavi, A.
  • Physics of Plasmas, Vol. 21, Issue 1
  • DOI: 10.1063/1.4861389

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA
journal, October 2012

  • Theobald, W.; Nora, R.; Lafon, M.
  • Physics of Plasmas, Vol. 19, Issue 10
  • DOI: 10.1063/1.4763556

Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions
journal, May 2014

  • Rinderknecht, H. G.; Sio, H.; Li, C. K.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876615

Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions
journal, May 2015

  • Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921130

Classical transport equations for burning gas-metal plasmas
journal, September 2014

  • Molvig, Kim; Simakov, Andrei N.; Vold, Erik L.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4895666

Electron transport in a collisional plasma with multiple ion species
journal, February 2014

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867183

The physical basis for numerical fluid simulations in laser fusion
journal, November 1987


Use of artificial viscosity in multidimensional fluid dynamic calculations
journal, July 1980


Drive Asymmetry and the Origin of Turbulence in an ICF Implosion
journal, August 2012


Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance
journal, May 2014


Atomic mix in directly driven inertial confinement implosions
journal, November 2011

  • Wilson, D. C.; Ebey, P. S.; Sangster, T. C.
  • Physics of Plasmas, Vol. 18, Issue 11
  • DOI: 10.1063/1.3656962

Long Ion Mean-Free Path and Nonequilibrium Radiation Effects on High-Aspect-Ratio Laser-Driven Implosions
journal, May 1989


Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma
journal, September 1993

  • Vidal, F.; Matte, J. P.; Casanova, M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.860654

Effects of viscosity in modeling laser fusion implosions
journal, December 2007


Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
journal, May 2014


The effects of plasma diffusion and viscosity on turbulent instability growth
journal, September 2014

  • Haines, Brian M.; Vold, Erik L.; Molvig, Kim
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4895502

Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions
journal, February 2014

  • Mason, R. J.; Kirkpatrick, R. C.; Faehl, R. J.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864641

Erratum: “Real viscosity effects in inertial confinement fusion target deuterium-tritium micro-implosions” [Phys. Plasmas 21, 022705 (2014)]
journal, March 2014

  • Mason, R. J.; Kirkpatrick, R. C.; Faehl, R. J.
  • Physics of Plasmas, Vol. 21, Issue 3
  • DOI: 10.1063/1.4869467

Electro-diffusion in a plasma with two ion species
journal, August 2012

  • Kagan, Grigory; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4745869

Thermo-diffusion in inertially confined plasmas
journal, April 2014


Photon coupling theory for plasmas with strong Compton scattering: Four temperature theory
journal, February 2009

  • Molvig, Kim; Alme, Marv; Webster, Robert
  • Physics of Plasmas, Vol. 16, Issue 2
  • DOI: 10.1063/1.3077663

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
journal, January 2006

  • Goncharov, V. N.; Gotchev, O. V.; Vianello, E.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162803

Application of fall-line mix models to understand degraded yield
journal, July 2008

  • Welser-Sherrill, L.; Cooley, J. H.; Haynes, D. A.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2953215

Inference of ICF implosion core mix using experimental dataand theoretical mix modeling
journal, December 2009


The effects of laser absorption on direct-drive capsule experiments at OMEGA
journal, April 2012

  • Dodd, E. S.; Benage, J. F.; Kyrala, G. A.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3700187

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


Multifluid interpenetration mixing in directly driven inertial confinement fusion capsule implosions
journal, May 2004

  • Wilson, D. C.; Cranfill, C. W.; Christensen, C.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1667486

The effect of mix on capsule yields as a function of shell thickness and gas fill
journal, June 2014


Core performance and mix in direct-drive spherical implosions with high uniformity
journal, May 2001

  • Meyerhofer, D. D.; Delettrez, J. A.; Epstein, R.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1350964

Effects of Fuel-Shell Mix upon Direct-Drive, Spherical Implosions on OMEGA
journal, September 2002


Works referencing / citing this record:

Observation and modeling of interspecies ion separation in inertial confinement fusion implosions via imaging x-ray spectroscopy
journal, March 2017

  • Joshi, T. R.; Hakel, P.; Hsu, S. C.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4978887

Plasma transport in an Eulerian AMR code
journal, April 2017

  • Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4979171

Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
journal, May 2018

  • Taitano, W. T.; Simakov, A. N.; Chacón, L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024402

Diffusion-driven fluid dynamics in ideal gases and plasmas
journal, June 2018

  • Vold, E. L.; Yin, L.; Taitano, W.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5029932

Multi-species plasma transport in 1D direct-drive ICF simulations
journal, March 2019

  • Vold, E.; Rauenzahn, R.; Simakov, A. N.
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5083157

Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
journal, August 2019

  • Zhou, Ye; Clark, Timothy T.; Clark, Daniel S.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5088745

Progress on observations of interspecies ion separation in inertial-confinement-fusion implosions via imaging x-ray spectroscopy
journal, June 2019

  • Joshi, T. R.; Hsu, S. C.; Hakel, P.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5092998

Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets
journal, January 2020

  • Lu, Yingchao; Li, Shengtai; Li, Hui
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5126149

Self-similar solutions for multi-species plasma mixing by gradient driven transport
journal, March 2018

  • Vold, E.; Kagan, G.; Simakov, A. N.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab38e

Kinetic physics in ICF: present understanding and future directions
journal, April 2018

  • Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 6
  • DOI: 10.1088/1361-6587/aab79f