DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes

Abstract

Li- and Mn-rich (LMR) cathode materials have been considered as promising candidates for energy storage applications due to high energy density. However, these materials suffer from a serious problem of voltage fade. Oxygen loss and the layer to spinel phase transition are two major contributors of such voltage fade. In this paper, using a combination of x-ray diffraction (XRD), pair distribution function (PDF), x-ray absorption (XAS) techniques and aberration-corrected scanning transmission electron microscopy (STEM), we studied the effects of micro structural defects, especially the grain boundaries on the oxygen loss and layered-to-spinel phase transition through prelithiation of a model compound Li2Ru0.5Mn0.5O3. It is found that the nano-sized micro structural defects, especially the large amount of grain boundaries created by the prelithiation can greatly accelerate the oxygen loss and voltage fade. Defects (such as nano-sized grain boundaries) and oxygen release form a positive feedback loop, promote each other during cycling, and accelerate the two major voltage fade contributors: the transition metal reduction and layered-to-spinel phase transition. These results clearly demonstrate the important relationships among the oxygen loss, microstructural defects and voltage fade. The importance of maintaining good crystallinity and protecting the surface of LMR material are also suggested.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [4];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Physics. Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Shanghai Univ. (China)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States); Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Physics. Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS)
  4. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Physics. Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1329785
Report Number(s):
BNL-112729-2016-JA
Journal ID: ISSN 1530-6984
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 16; Journal Issue: 10; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Lithium Ion Battery; Center for Functional Nanomaterials

Citation Formats

Hu, E., Lyu, Y., Xin, H., Xin, H. L., Liu, J., Han, L., Bak, S. -M., Bai, J., Yu, X., Li, H., and Yang, X. Q. Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b01609.
Hu, E., Lyu, Y., Xin, H., Xin, H. L., Liu, J., Han, L., Bak, S. -M., Bai, J., Yu, X., Li, H., & Yang, X. Q. Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes. United States. https://doi.org/10.1021/acs.nanolett.6b01609
Hu, E., Lyu, Y., Xin, H., Xin, H. L., Liu, J., Han, L., Bak, S. -M., Bai, J., Yu, X., Li, H., and Yang, X. Q. Mon . "Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes". United States. https://doi.org/10.1021/acs.nanolett.6b01609. https://www.osti.gov/servlets/purl/1329785.
@article{osti_1329785,
title = {Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes},
author = {Hu, E. and Lyu, Y. and Xin, H. and Xin, H. L. and Liu, J. and Han, L. and Bak, S. -M. and Bai, J. and Yu, X. and Li, H. and Yang, X. Q.},
abstractNote = {Li- and Mn-rich (LMR) cathode materials have been considered as promising candidates for energy storage applications due to high energy density. However, these materials suffer from a serious problem of voltage fade. Oxygen loss and the layer to spinel phase transition are two major contributors of such voltage fade. In this paper, using a combination of x-ray diffraction (XRD), pair distribution function (PDF), x-ray absorption (XAS) techniques and aberration-corrected scanning transmission electron microscopy (STEM), we studied the effects of micro structural defects, especially the grain boundaries on the oxygen loss and layered-to-spinel phase transition through prelithiation of a model compound Li2Ru0.5Mn0.5O3. It is found that the nano-sized micro structural defects, especially the large amount of grain boundaries created by the prelithiation can greatly accelerate the oxygen loss and voltage fade. Defects (such as nano-sized grain boundaries) and oxygen release form a positive feedback loop, promote each other during cycling, and accelerate the two major voltage fade contributors: the transition metal reduction and layered-to-spinel phase transition. These results clearly demonstrate the important relationships among the oxygen loss, microstructural defects and voltage fade. The importance of maintaining good crystallinity and protecting the surface of LMR material are also suggested.},
doi = {10.1021/acs.nanolett.6b01609},
journal = {Nano Letters},
number = 10,
volume = 16,
place = {United States},
year = {Mon Sep 26 00:00:00 EDT 2016},
month = {Mon Sep 26 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


Nano-network electronic conduction in iron and nickel olivine phosphates
journal, February 2004

  • Herle, P. Subramanya; Ellis, B.; Coombs, N.
  • Nature Materials, Vol. 3, Issue 3
  • DOI: 10.1038/nmat1063

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Lithium insertion into manganese spinels
journal, April 1983

  • Thackeray, M. M.; David, W. I. F.; Bruce, P. G.
  • Materials Research Bulletin, Vol. 18, Issue 4, p. 461-472
  • DOI: 10.1016/0025-5408(83)90138-1

Electrochemical extraction of lithium from LiMn2O4
journal, February 1984


Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes
journal, February 2015

  • Dogan, Fulya; Long, Brandon R.; Croy, Jason R.
  • Journal of the American Chemical Society, Vol. 137, Issue 6
  • DOI: 10.1021/ja511299y

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process
journal, July 2013

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401849t

Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
journal, April 2014

  • Zheng, Jianming; Gu, Meng; Genc, Arda
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500486y

Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery
journal, January 2010

  • Hong, Jihyun; Seo, Dong-Hwa; Kim, Sung-Wook
  • Journal of Materials Chemistry, Vol. 20, Issue 45
  • DOI: 10.1039/c0jm01971b

Phase Transitions in Li2MnO3 Electrodes at Various States-of-Charge
journal, March 2014


Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation
journal, October 2004

  • Reed, John; Ceder, Gerbrand
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020733x

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes
journal, March 2011

  • Deng, Z. Q.; Manthiram, A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200375d

Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay
journal, January 2014

  • Lee, Eun-Sung; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 2, Issue 11
  • DOI: 10.1039/c3ta14975g

Facet-Dependent Disorder in Pristine High-Voltage Lithium–Manganese-Rich Cathode Material
journal, November 2014

  • Dixit, Hemant; Zhou, Wu; Idrobo, Juan-Carlos
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn505740v

Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
journal, January 2010


High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution
journal, September 2005

  • Bréger, Julien; Jiang, Meng; Dupré, Nicolas
  • Journal of Solid State Chemistry, Vol. 178, Issue 9, p. 2575-2585
  • DOI: 10.1016/j.jssc.2005.05.027

The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2
journal, February 2011

  • Armstrong, A. Robert; Lyness, Christopher; Panchmatia, Pooja M.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2967

Structural Characterization of Layered Li x Ni 0.5 Mn 0.5 O 2 (0 < x ≤ 2) Oxide Electrodes for Li Batteries
journal, June 2003

  • Johnson, Christopher S.; Kim, Jeom-Soo; Kropf, A. Jeremy
  • Chemistry of Materials, Vol. 15, Issue 12
  • DOI: 10.1021/cm0204728

Prelithiation Activates Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 for High Capacity and Excellent Cycling Stability
journal, July 2015


The Problem with Determining Atomic Structure at the Nanoscale
journal, April 2007


The crystallography of correlated disorder
journal, May 2015


Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis
journal, September 2007


Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries
journal, July 2012

  • Hong, Jihyun; Lim, Hee-Dae; Lee, Minah
  • Chemistry of Materials, Vol. 24, Issue 14
  • DOI: 10.1021/cm3005634

Reversible Oxygen Participation to the Redox Processes Revealed for Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2
journal, January 2013

  • Koga, Hideyuki; Croguennec, Laurence; Ménétrier, Michel
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.038306jes

Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2
journal, August 2013


Crystal structure of Li x Ni 2 x O 2 and a lattice-gas model for the order-disorder transition
journal, August 1992


Layered-to-Spinel Phase Transition in Li[sub x]MnO[sub 2]
journal, January 2001

  • Reed, J.; Ceder, G.; Van Der Ven, A.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 6
  • DOI: 10.1149/1.1368896

A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation
journal, January 2012

  • Kim, Sangtae; Ma, Xiaohua; Ong, Shyue Ping
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 44
  • DOI: 10.1039/c2cp43377j

Utilizing Environmental Friendly Iron as a Substitution Element in Spinel Structured Cathode Materials for Safer High Energy Lithium-Ion Batteries
journal, December 2015

  • Hu, Enyuan; Bak, Seong-Min; Liu, Yijin
  • Advanced Energy Materials, Vol. 6, Issue 3
  • DOI: 10.1002/aenm.201501662

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
journal, July 2013

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4019275

Effect of interface modifications on voltage fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathode materials
journal, March 2014


Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2
journal, January 2013

  • Martha, Surendra K.; Nanda, Jagjit; Kim, Yoongu
  • Journal of Materials Chemistry A, Vol. 1, Issue 18
  • DOI: 10.1039/c3ta10586e

Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade
journal, September 2015

  • Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui
  • Angewandte Chemie International Edition, Vol. 54, Issue 44
  • DOI: 10.1002/anie.201506408

Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries
journal, July 2005

  • Myung, Seung-Taek; Izumi, Kentarou; Komaba, Shinichi
  • Chemistry of Materials, Vol. 17, Issue 14, p. 3695-3704
  • DOI: 10.1021/cm050566s

The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries
journal, February 2012

  • Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S.
  • Advanced Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adma.201104106

Works referencing / citing this record:

Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
journal, August 2019


Unveiling the benefits of potassium doping on the structural integrity of Li–Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy
journal, January 2019

  • Wang, Jianyin; Yang, Mengchu; Zhao, Chong
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 43
  • DOI: 10.1039/c9cp04204k

Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process
journal, October 2018


Uniform Na + Doping‐Induced Defects in Li‐ and Mn‐Rich Cathodes for High‐Performance Lithium‐Ion Batteries
journal, May 2019


Suppression of Voltage Decay and Improvement in Electrochemical Performance by Zirconium Doping in Li-Rich Cathode Materials for Li-Ion Batteries
journal, January 2018

  • Dahiya, P. P.; Ghanty, C.; Sahoo, K.
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0751813jes

Toward high-performance Li(Ni x Co y Mn z )O 2 cathodes: facile fabrication of an artificial polymeric interphase using functional polyacrylates
journal, January 2018

  • Sun, Bing; El Kazzi, Mario; Müller, Elisabeth
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta03954b

Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes
journal, January 2018

  • Ye, Changchun; Tu, Wenqiang; Yin, Limei
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta06150e

Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries
journal, March 2017


Phase Transformation of Lithium‐rich Oxide Cathode in Full Cell and its Suppression by Solid Electrolyte Interphase on Graphite Anode
journal, March 2020

  • Tu, Wenqiang; Wen, Yucheng; Ye, Changchun
  • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 3, Issue 1
  • DOI: 10.1002/eem2.12034

Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium-Sulfur Batteries
journal, March 2018

  • Zhao, Enyue; Nie, Kaihui; Yu, Xiqian
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707543

Si-doped high-energy Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode with improved capacity for lithium-ion batteries
journal, December 2018

  • Nation, Leah; Wu, Yan; James, Christine
  • Journal of Materials Research, Vol. 33, Issue 24
  • DOI: 10.1557/jmr.2018.378

Layer‐Based Heterostructured Cathodes for Lithium‐Ion and Sodium‐Ion Batteries
journal, February 2019

  • Deng, Ya‐Ping; Wu, Zhen‐Guo; Liang, Ruilin
  • Advanced Functional Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adfm.201808522

Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2
journal, March 2020