DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

Abstract

Abstract We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density ( ρ L ) and the local electron number density ( n e L ) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass ( M ) can be calculated by M ∼ ρ L / n e L under the assumption of quasi‐neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L ∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O + ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that somemore » of thermal O + ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O + in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [4];  [4];  [5];  [6]; ORCiD logo [7];  [8];  [5];  [7]
  1. Kyoto Univ. (Japan). Graduate School of Science, Data Analysis Center for Geomagnetism and Space Magnetism
  2. Kyoto Univ. (Japan). Graduate School of Science, Dept. of Geophysics
  3. Nagoya Univ. (Japan). Solar Terrestrial Environment Lab.
  4. Univ. of Iowa, Iowa City, IA (United States). Dept. of Physics and Astronomy
  5. Univ. of New Hampshire, Durham, NH (United States). Inst. for Earth, Oceans and Space
  6. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States). Solar System Exploration Division
  7. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Space Sciences and Applications Group
  8. The Inst. of Statistical Mathematics, Research Organization of Information and Systems, Tokyo (Japan)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Aeronautics and Space Administration (NASA); Ministry of Education, Culture, Sports, Science and Technology (MEXT); USDOE
OSTI Identifier:
1329553
Alternate Identifier(s):
OSTI ID: 1402177
Report Number(s):
LA-UR-15-20090
Journal ID: ISSN 2169-9380
Grant/Contract Number:  
AC52-06NA25396; 25287127; 921648; NAS5-01072; 967399
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Volume: 120; Journal Issue: 2; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; inner magnetosphere; oxygen torus; magnetic storm; plasmasphere; ring current; ULF waves

Citation Formats

Nose, Masahito, Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., De Pascuale, S., Smith, C. W., MacDowall, R. J., Reeves, Geoffrey D., Nakano, S., Spence, H. E., and Larsen, Brian Arthur. Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations. United States: N. p., 2015. Web. doi:10.1002/2014JA020593.
Nose, Masahito, Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., De Pascuale, S., Smith, C. W., MacDowall, R. J., Reeves, Geoffrey D., Nakano, S., Spence, H. E., & Larsen, Brian Arthur. Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations. United States. https://doi.org/10.1002/2014JA020593
Nose, Masahito, Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., De Pascuale, S., Smith, C. W., MacDowall, R. J., Reeves, Geoffrey D., Nakano, S., Spence, H. E., and Larsen, Brian Arthur. Thu . "Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations". United States. https://doi.org/10.1002/2014JA020593. https://www.osti.gov/servlets/purl/1329553.
@article{osti_1329553,
title = {Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations},
author = {Nose, Masahito and Oimatsu, S. and Keika, K. and Kletzing, C. A. and Kurth, W. S. and De Pascuale, S. and Smith, C. W. and MacDowall, R. J. and Reeves, Geoffrey D. and Nakano, S. and Spence, H. E. and Larsen, Brian Arthur},
abstractNote = {Abstract We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density ( ρ L ) and the local electron number density ( n e L ) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass ( M ) can be calculated by M ∼ ρ L / n e L under the assumption of quasi‐neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L ∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O + ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O + ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O + in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.},
doi = {10.1002/2014JA020593},
journal = {Journal of Geophysical Research. Space Physics},
number = 2,
volume = 120,
place = {United States},
year = {Thu Feb 19 00:00:00 EST 2015},
month = {Thu Feb 19 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fate of outflowing suprathermal oxygen ions that originate in the polar ionosphere
journal, January 2006

  • Ebihara, Y.; Yamada, M.; Watanabe, S.
  • Journal of Geophysical Research, Vol. 111, Issue A4
  • DOI: 10.1029/2005JA011403

Transport of ionospheric ions in the magnetosphere: Theory and observations
journal, January 1988


Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase
journal, August 1984

  • Horwitz, J. L.; Comfort, R. H.; Chappell, C. R.
  • Geophysical Research Letters, Vol. 11, Issue 8
  • DOI: 10.1029/GL011i008p00701

Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications: HEAVY ION MASS LOADING
journal, February 2005

  • Fraser, B. J.; Horwitz, J. L.; Slavin, J. A.
  • Geophysical Research Letters, Vol. 32, Issue 4
  • DOI: 10.1029/2004GL021315

Alfven wave resonances in a realistic magnetospheric magnetic field geometry
journal, June 1981

  • Singer, H. J.; Southwood, D. J.; Walker, R. J.
  • Journal of Geophysical Research: Space Physics, Vol. 86, Issue A6
  • DOI: 10.1029/JA086iA06p04589

Mass density inferred from toroidal wave frequencies and its comparison to electron density
journal, January 2006

  • Takahashi, Kazue; Denton, Richard E.; Anderson, Roger R.
  • Journal of Geophysical Research, Vol. 111, Issue A1
  • DOI: 10.1029/2005JA011286

On the presence and properties of cold ions near Earth's equatorial magnetosphere: Magnetospheric cold ions
journal, March 2014

  • Lee, Justin H.; Angelopoulos, Vassilis
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 3
  • DOI: 10.1002/2013JA019305

Ionospheric mass ejection in response to a CME
journal, August 1999

  • Moore, T. E.; Peterson, W. K.; Russell, C. T.
  • Geophysical Research Letters, Vol. 26, Issue 15
  • DOI: 10.1029/1999GL900456

A semiempirical model of large-scale magnetospheric electric fields
journal, January 1973


The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
journal, June 2013


Stable auroral red arcs, sinks for energy of D st main phase
journal, April 1965


Heavy ion density enhancements in the outer plasmasphere
journal, January 1987

  • Roberts, W. T.; Horwitz, J. L.; Comfort, R. H.
  • Journal of Geophysical Research, Vol. 92, Issue A12
  • DOI: 10.1029/JA092iA12p13499

Solar cycle variation of geosynchronous plasma mass density derived from the frequency of standing Alfvén waves: MASS DENSITY AT GEOSYNCHRONOUS ORBIT
journal, July 2010

  • Takahashi, Kazue; Denton, Richard E.; Singer, Howard J.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A7
  • DOI: 10.1029/2009JA015243

Ion composition in the plasma trough and plasma plume derived from a Combined Release and Radiation Effects Satellite magnetoseismic study: ION COMPOSITION IN THE PLASMA TROUGH AND PLASMA PLUME
journal, December 2008

  • Takahashi, Kazue; Ohtani, Shin-ichi; Denton, Richard E.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A12
  • DOI: 10.1029/2008JA013248

A magnetospheric magnetic field model with a warped tail current sheet
journal, January 1989


Solar wind influence on the oxygen content of ion outflow in the high-altitude polar cap during solar minimum conditions
journal, April 2001

  • Elliott, H. A.; Comfort, R. H.; Craven, P. D.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A4
  • DOI: 10.1029/2000JA003022

The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
journal, October 2013


Oxygen torus in the deep inner magnetosphere and its contribution to recurrent process of O + -rich ring current formation : OXYGEN TORUS IN INNER MAGNETOSPHERE
journal, October 2011

  • Nosé, M.; Takahashi, K.; Anderson, R. R.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A10
  • DOI: 10.1029/2011JA016651

Simulation of Van Allen Probes plasmapause encounters
journal, September 2014

  • Goldstein, J.; Pascuale, S. De; Kletzing, C.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 9
  • DOI: 10.1002/2014JA020252

Solar cycle variation of plasma mass density in the outer magnetosphere: Magnetoseismic analysis of toroidal standing Alfvén waves detected by Geotail
journal, October 2014

  • Takahashi, Kazue; Denton, Richard E.; Hirahara, Masafumi
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 10
  • DOI: 10.1002/2014JA020274

Smooth electron density transition from plasmasphere to the subauroral region: SMOOTH PLASMASPHERIC DENSITY TRANSITION
journal, May 2007

  • Tu, Jiannan; Song, Paul; Reinisch, Bodo W.
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A5
  • DOI: 10.1029/2007JA012298

Low energy neutral atoms in the magnetosphere
journal, March 2001

  • Moore, T. E.; Collier, M. R.; Burch, J. L.
  • Geophysical Research Letters, Vol. 28, Issue 6
  • DOI: 10.1029/2000GL012500

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
journal, March 2013


Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere: WARM PLASMA CLOAK
journal, September 2008

  • Chappell, C. R.; Huddleston, M. M.; Moore, T. E.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A9
  • DOI: 10.1029/2007JA012945

Distribution in magnetotail of O + ions from cusp/cleft ionosphere: A possible substorm trigger
journal, January 1992

  • Cladis, J. B.; Francis, W. E.
  • Journal of Geophysical Research, Vol. 97, Issue A1
  • DOI: 10.1029/91JA02376

The motion of a proton in the equatorial magnetosphere
journal, February 1975


A new model of the location of the plasmapause: CRRES results
journal, January 2002


Unified theory of SAR arc formation at the plasmapause
journal, July 1971

  • Cornwall, John M.; Coroniti, F. V.; Thorne, R. M.
  • Journal of Geophysical Research, Vol. 76, Issue 19
  • DOI: 10.1029/JA076i019p04428

Parallel acceleration and transport of ions from polar ionosphere to plasma sheet
journal, September 1986


Dual-spacecraft measurements of plasmasphere-ionosphere coupling
journal, January 1986

  • Horwitz, J. L.; Brace, L. H.; Comfort, R. H.
  • Journal of Geophysical Research, Vol. 91, Issue A10
  • DOI: 10.1029/JA091iA10p11203

Plasmasphere-ionosphere coupling: 2. Ion composition measurements at plasmaspheric and ionospheric altitudes and comparison with modeling results
journal, January 1990

  • Horwitz, J. L.; Comfort, R. H.; Richards, P. G.
  • Journal of Geophysical Research, Vol. 95, Issue A6
  • DOI: 10.1029/JA095iA06p07949

Isolated cold plasma regions: Observations and their relation to possible production mechanisms
journal, March 1975


Initial observations of thermal plasma composition and energetics from Dynamics Explorer-1
journal, September 1982


Storm phase dependence of ion outflow: Statistical signatures obtained by IMAGE/LENA
journal, January 2007

  • Kunori, T.; Nosé, M.; Taguchi, S.
  • Geophysical Research Letters, Vol. 34, Issue 18
  • DOI: 10.1029/2007GL029877

Science Objectives and Rationale for the Radiation Belt Storm Probes Mission
journal, September 2012


Transport of ionospheric ions in the magnetosphere: Theory and observations
journal, January 1988


Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
journal, March 2013


The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
journal, June 2013


Science Objectives and Rationale for the Radiation Belt Storm Probes Mission
journal, September 2012


A magnetospheric magnetic field model with a warped tail current sheet
journal, January 1989


The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
journal, October 2013


Works referencing / citing this record:

L Versus Time Structures of Dayside Magnetic Pulsations Detected by the European Quasi‐Meridional Magnetometer Array
journal, August 2019

  • Takahashi, Kazue; Heilig, Balázs
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 8
  • DOI: 10.1029/2019ja026796

Roles of Flow Braking, Plasmaspheric Virtual Resonances, and Ionospheric Currents in Producing Ground Pi2 Pulsations
journal, November 2018

  • Takahashi, Kazue; Hartinger, Michael D.; Vellante, Massimo
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 11
  • DOI: 10.1029/2018ja025664

MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves
journal, November 2019

  • Lee, Justin H.; Turner, Drew L.; Toledo‐Redondo, Sergio
  • Geophysical Research Letters, Vol. 46, Issue 21
  • DOI: 10.1029/2019gl085182

Propagation of EMIC Waves Inside the Plasmasphere: A Two‐Event Study
journal, November 2019

  • Wang, G.; Zhang, T. L.; Gao, Z. L.
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 11
  • DOI: 10.1029/2019ja027055