DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2

Abstract

We report density functional theory (M06L) calculations including Poisson-Boltzmann solvation to determine the reaction pathways and barriers for the hydrogen evolution reaction (HER) on MoS2 using both a periodic two-dimensional slab and a Mo10S21 cluster model. We find that the HER mechanism involves protonation of the electron rich molybdenum hydride site (Volmer-Heyrovsky mechanism), leading to a calculated free energy barrier-of 17.9 kcal/mol, in good agreement with the barrier of 19.9 kcal/mol estimated from :the experimental turnover frequency. Hydronium protonation of the hydride On the Mo site is 21.3 kcal/mol more favorable than protonation of the hydrogen on the S site because the electrons localized on the Mo-H bond are readily transferred to form dihydrogen with hydronium. We predict the Volmer-Tafel mechanism in which hydrogen atoms bound to molybdenum and sulfur sites recombine to form H2 has a barrier of 22.6 kcal/mol. Starting with hydrogen atoms on adjacent sulfur atoms, the Volmer-Tafel mechanism goes instead through the M-H + S-H pathway.. In discussions of metal chalcogenide HER catalysis, the S-H bond energy has been proposed as the critical parameter. However, we find-that the sulfur hydrogen species is not an important intermediate since the free energy of this species does not playmore » a direct role in determining the effective activation barrier. Rather we suggest that the kinetic barrier should:be used as a descriptor for reactivity, rather than the equilibrium thermodynamics. This is supported by the agreement between the calculated barrier and the experimental turnover frequency. These results suggest that to design a more reactive catalyst from edge exposed MoS2, one should focus on lowering the reaction barrier between the Metal hydride and a proton from the hydronium in solution.« less

Authors:
; ; ;  [1]
  1. Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
Publication Date:
Research Org.:
California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1328818
Alternate Identifier(s):
OSTI ID: 1457525
Grant/Contract Number:  
SC0004993
Resource Type:
Published Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Name: Journal of the American Chemical Society Journal Volume: 137 Journal Issue: 20; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 08 HYDROGEN

Citation Formats

Huang, Yufeng, Nielsen, Robert J., Goddard, III, William A., and Soriaga, Manuel P. The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2. United States: N. p., 2015. Web. doi:10.1021/jacs.5b03329.
Huang, Yufeng, Nielsen, Robert J., Goddard, III, William A., & Soriaga, Manuel P. The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2. United States. https://doi.org/10.1021/jacs.5b03329
Huang, Yufeng, Nielsen, Robert J., Goddard, III, William A., and Soriaga, Manuel P. Thu . "The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2". United States. https://doi.org/10.1021/jacs.5b03329.
@article{osti_1328818,
title = {The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2},
author = {Huang, Yufeng and Nielsen, Robert J. and Goddard, III, William A. and Soriaga, Manuel P.},
abstractNote = {We report density functional theory (M06L) calculations including Poisson-Boltzmann solvation to determine the reaction pathways and barriers for the hydrogen evolution reaction (HER) on MoS2 using both a periodic two-dimensional slab and a Mo10S21 cluster model. We find that the HER mechanism involves protonation of the electron rich molybdenum hydride site (Volmer-Heyrovsky mechanism), leading to a calculated free energy barrier-of 17.9 kcal/mol, in good agreement with the barrier of 19.9 kcal/mol estimated from :the experimental turnover frequency. Hydronium protonation of the hydride On the Mo site is 21.3 kcal/mol more favorable than protonation of the hydrogen on the S site because the electrons localized on the Mo-H bond are readily transferred to form dihydrogen with hydronium. We predict the Volmer-Tafel mechanism in which hydrogen atoms bound to molybdenum and sulfur sites recombine to form H2 has a barrier of 22.6 kcal/mol. Starting with hydrogen atoms on adjacent sulfur atoms, the Volmer-Tafel mechanism goes instead through the M-H + S-H pathway.. In discussions of metal chalcogenide HER catalysis, the S-H bond energy has been proposed as the critical parameter. However, we find-that the sulfur hydrogen species is not an important intermediate since the free energy of this species does not play a direct role in determining the effective activation barrier. Rather we suggest that the kinetic barrier should:be used as a descriptor for reactivity, rather than the equilibrium thermodynamics. This is supported by the agreement between the calculated barrier and the experimental turnover frequency. These results suggest that to design a more reactive catalyst from edge exposed MoS2, one should focus on lowering the reaction barrier between the Metal hydride and a proton from the hydronium in solution.},
doi = {10.1021/jacs.5b03329},
journal = {Journal of the American Chemical Society},
number = 20,
volume = 137,
place = {United States},
year = {Thu May 14 00:00:00 EDT 2015},
month = {Thu May 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/jacs.5b03329

Citation Metrics:
Cited by: 152 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Atomic-Scale Structure of Single-Layer MoS 2 Nanoclusters
journal, January 2000


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Electronic Properties of MoS 2 Nanoparticles
journal, November 2007

  • Li, Tianshu; Galli, Giulia
  • The Journal of Physical Chemistry C, Vol. 111, Issue 44
  • DOI: 10.1021/jp075424v

MoS 2 Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution
journal, May 2013

  • Liao, Lei; Zhu, Jie; Bian, Xiaojun
  • Advanced Functional Materials, Vol. 23, Issue 42
  • DOI: 10.1002/adfm.201300318

Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
journal, January 2012

  • Merki, Daniel; Vrubel, Heron; Rovelli, Lorenzo
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20539d

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution
journal, November 2014

  • Li, Yanpeng; Yu, Yifei; Huang, Yufeng
  • ACS Catalysis, Vol. 5, Issue 1
  • DOI: 10.1021/cs501635v

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Ab initio effective potentials for use in molecular quantum mechanics
journal, November 1974


Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements
journal, October 1982

  • Francl, Michelle M.; Pietro, William J.; Hehre, Warren J.
  • The Journal of Chemical Physics, Vol. 77, Issue 7, p. 3654-3665
  • DOI: 10.1063/1.444267

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Atomic-Scale Edge Structures on Industrial-Style MoS2 Nanocatalysts
journal, August 2011

  • Hansen, Lars P.; Ramasse, Quentin M.; Kisielowski, Christian
  • Angewandte Chemie International Edition, Vol. 50, Issue 43
  • DOI: 10.1002/anie.201103745

Fe and Ni AB initio effective potentials for use in molecular calculations
journal, October 1974


Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
journal, January 2011

  • Merki, Daniel; Hu, Xile
  • Energy & Environmental Science, Vol. 4, Issue 10, 3878
  • DOI: 10.1039/c1ee01970h

Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution
journal, January 2012

  • Laursen, Anders B.; Kegnæs, Søren; Dahl, Søren
  • Energy & Environmental Science, Vol. 5, Issue 2
  • DOI: 10.1039/c2ee02618j

The influence of polarization functions on molecular orbital hydrogenation energies
journal, January 1973

  • Hariharan, P. C.; Pople, J. A.
  • Theoretica Chimica Acta, Vol. 28, Issue 3
  • DOI: 10.1007/BF00533485

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Free-energy profiles along reduction pathways of MoS2 M-edge and S-edge by dihydrogen: A first-principles study
journal, June 2011

  • Prodhomme, Pierre-Yves; Raybaud, Pascal; Toulhoat, Hervé
  • Journal of Catalysis, Vol. 280, Issue 2
  • DOI: 10.1016/j.jcat.2011.03.017

The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data
journal, October 1998

  • Tissandier, Michael D.; Cowen, Kenneth A.; Feng, Wan Yong
  • The Journal of Physical Chemistry A, Vol. 102, Issue 40
  • DOI: 10.1021/jp982638r

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction
journal, January 2014

  • Yang, Jieun; Shin, Hyeon Suk
  • J. Mater. Chem. A, Vol. 2, Issue 17
  • DOI: 10.1039/C3TA14151A

Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
journal, January 1985

  • Hay, P. Jeffrey; Wadt, Willard R.
  • The Journal of Chemical Physics, Vol. 82, Issue 1
  • DOI: 10.1063/1.448799

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Hydrogen evolution on nano-particulate transition metal sulfides
journal, January 2009

  • Bonde, Jacob; Moses, Poul G.; Jaramillo, Thomas F.
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/B803857K

High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS 2 Materials
journal, November 2014

  • Wang, Haotian; Zhang, Qianfan; Yao, Hongbin
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl503730c

Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18
journal, May 1980

  • McLean, A. D.; Chandler, G. S.
  • The Journal of Chemical Physics, Vol. 72, Issue 10, p. 5639-5648
  • DOI: 10.1063/1.438980

Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences
journal, July 2013

  • Bochevarov, Art D.; Harder, Edward; Hughes, Thomas F.
  • International Journal of Quantum Chemistry, Vol. 113, Issue 18
  • DOI: 10.1002/qua.24481

Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts
journal, January 2004

  • Lauritsen, J. V.; Bollinger, M. V.; Lægsgaard, E.
  • Journal of Catalysis, Vol. 221, Issue 2, p. 510-522
  • DOI: 10.1016/j.jcat.2003.09.015

Layer-Dependent Electrocatalysis of MoS 2 for Hydrogen Evolution
journal, January 2014

  • Yu, Yifei; Huang, Sheng-Yang; Li, Yanpeng
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl403620g

Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study
journal, April 2002

  • Schweiger, Hannes; Raybaud, Pascal; Kresse, Georg
  • Journal of Catalysis, Vol. 207, Issue 1
  • DOI: 10.1006/jcat.2002.3508

Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
journal, April 1984

  • Frisch, Michael J.; Pople, John A.; Binkley, J. Stephen
  • The Journal of Chemical Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.447079

Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory
journal, December 1994

  • Tannor, David J.; Marten, Bryan; Murphy, Robert
  • Journal of the American Chemical Society, Vol. 116, Issue 26
  • DOI: 10.1021/ja00105a030

Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
journal, January 1985

  • Wadt, Willard R.; Hay, P. Jeffrey
  • The Journal of Chemical Physics, Vol. 82, Issue 1
  • DOI: 10.1063/1.448800

Free Energy Landscapes for S−H Bonds in Cp* 2 Mo 2 S 4 Complexes
journal, April 2009

  • Appel, Aaron M.; Lee, Suh-Jane; Franz, James A.
  • Journal of the American Chemical Society, Vol. 131, Issue 14
  • DOI: 10.1021/ja8093179

Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F
journal, October 1983

  • Clark, Timothy; Chandrasekhar, Jayaraman; Spitznagel, G�nther W.
  • Journal of Computational Chemistry, Vol. 4, Issue 3
  • DOI: 10.1002/jcc.540040303

Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges
journal, October 2007

  • Marenich, Aleksandr V.; Olson, Ryan M.; Kelly, Casey P.
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 6
  • DOI: 10.1021/ct7001418

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527