DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving the radiation hardness of graphene field effect transistors

Abstract

Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally, we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [3];  [3];  [1]
  1. Columbia Univ., New York, NY (United States). Dept. of Electrical Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
  3. Columbia Univ., New York, NY (United States). Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Defense Threat Reduction Agency (DTRA) (United States)
OSTI Identifier:
1341676
Alternate Identifier(s):
OSTI ID: 1328601
Report Number(s):
BNL-113404-2017-JA
Journal ID: ISSN 0003-6951; R&D Project: CO031; KC0304030; TRN: US1701532
Grant/Contract Number:  
SC0012704; AC02-98CH10886; DMR-1420634; HDTRA1-11-0022
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 109; Journal Issue: 15; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; graphene; gamma rays; Dirac equation; gamma ray effects; x-ray photoelectron spectroscopy

Citation Formats

Alexandrou, Konstantinos, Masurkar, Amrita, Edrees, Hassan, Wishart, James F., Hao, Yufeng, Petrone, Nicholas, Hone, James, and Kymissis, Ioannis. Improving the radiation hardness of graphene field effect transistors. United States: N. p., 2016. Web. doi:10.1063/1.4963782.
Alexandrou, Konstantinos, Masurkar, Amrita, Edrees, Hassan, Wishart, James F., Hao, Yufeng, Petrone, Nicholas, Hone, James, & Kymissis, Ioannis. Improving the radiation hardness of graphene field effect transistors. United States. https://doi.org/10.1063/1.4963782
Alexandrou, Konstantinos, Masurkar, Amrita, Edrees, Hassan, Wishart, James F., Hao, Yufeng, Petrone, Nicholas, Hone, James, and Kymissis, Ioannis. Tue . "Improving the radiation hardness of graphene field effect transistors". United States. https://doi.org/10.1063/1.4963782. https://www.osti.gov/servlets/purl/1341676.
@article{osti_1341676,
title = {Improving the radiation hardness of graphene field effect transistors},
author = {Alexandrou, Konstantinos and Masurkar, Amrita and Edrees, Hassan and Wishart, James F. and Hao, Yufeng and Petrone, Nicholas and Hone, James and Kymissis, Ioannis},
abstractNote = {Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally, we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.},
doi = {10.1063/1.4963782},
journal = {Applied Physics Letters},
number = 15,
volume = 109,
place = {United States},
year = {Tue Oct 11 00:00:00 EDT 2016},
month = {Tue Oct 11 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Raman spectroscopy of graphene on different substrates and influence of defects
journal, June 2008

  • Das, Anindya; Chakraborty, Biswanath; Sood, A. K.
  • Bulletin of Materials Science, Vol. 31, Issue 3
  • DOI: 10.1007/s12034-008-0090-5

Experimental observation of the quantum Hall effect and Berry's phase in graphene
journal, November 2005

  • Zhang, Yuanbo; Tan, Yan-Wen; Stormer, Horst L.
  • Nature, Vol. 438, Issue 7065, p. 201-204
  • DOI: 10.1038/nature04235

Review of displacement damage effects in silicon devices
journal, June 2003

  • Srour, J. R.; Marshall, C. J.; Marshall, P. W.
  • IEEE Transactions on Nuclear Science, Vol. 50, Issue 3
  • DOI: 10.1109/TNS.2003.813197

The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper
journal, October 2013


Direct evidence for atomic defects in graphene layers
journal, August 2004

  • Hashimoto, Ayako; Suenaga, Kazu; Gloter, Alexandre
  • Nature, Vol. 430, Issue 7002
  • DOI: 10.1038/nature02817

Hysteresis of Electronic Transport in Graphene Transistors
journal, November 2010

  • Wang, Haomin; Wu, Yihong; Cong, Chunxiao
  • ACS Nano, Vol. 4, Issue 12
  • DOI: 10.1021/nn101950n

Low-Energy X-ray and Ozone-Exposure Induced Defect Formation in Graphene Materials and Devices
journal, December 2011

  • Zhang, En Xia; Newaz, A. K. M.; Wang, Bin
  • IEEE Transactions on Nuclear Science, Vol. 58, Issue 6
  • DOI: 10.1109/TNS.2011.2167519

Ozone-exposure and annealing effects on graphene-on-SiO 2 transistors
journal, September 2012

  • Zhang, E. X.; Newaz, A. K. M.; Wang, B.
  • Applied Physics Letters, Vol. 101, Issue 12
  • DOI: 10.1063/1.4753817

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Total ionizing dose-hardened carbon nanotube thin-film transistors with silicon oxynitride gate dielectrics
journal, August 2011

  • Cress, C. D.; McMorrow, J. J.; Robinson, J. T.
  • MRS Communications, Vol. 1, Issue 1
  • DOI: 10.1557/mrc.2011.10

Total Ionizing Dose Induced Charge Carrier Scattering in Graphene Devices
journal, December 2012

  • Cress, C. D.; Champlain, J. G.; Esqueda, I. S.
  • IEEE Transactions on Nuclear Science, Vol. 59, Issue 6
  • DOI: 10.1109/TNS.2012.2221479

The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO 2
journal, September 2011

  • Pirkle, A.; Chan, J.; Venugopal, A.
  • Applied Physics Letters, Vol. 99, Issue 12
  • DOI: 10.1063/1.3643444

Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays
journal, July 2014

  • Wang, Yuqing; Feng, Yi; Mo, Fei
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4890379

The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors
journal, August 2009

  • Aguirre, Carla M.; Levesque, Pierre L.; Paillet, Matthieu
  • Advanced Materials, Vol. 21, Issue 30
  • DOI: 10.1002/adma.200900550

Ion-Irradiation-Induced Defects in Isotopically-Labeled Two Layered Graphene: Enhanced In-Situ Annealing of the Damage
journal, November 2012

  • Kalbac, Martin; Lehtinen, Ossi; Krasheninnikov, Arkady V.
  • Advanced Materials, Vol. 25, Issue 7
  • DOI: 10.1002/adma.201203807

Charged-impurity scattering in graphene
journal, April 2008

  • Chen, J. -H.; Jang, C.; Adam, S.
  • Nature Physics, Vol. 4, Issue 5
  • DOI: 10.1038/nphys935

The effect of gamma-irradiation on few-layered graphene materials
journal, May 2014


Space radiation dosimetry in low-Earth orbit and beyond
journal, September 2001

  • Benton, E. R.; Benton, E. V.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 184, Issue 1-2
  • DOI: 10.1016/S0168-583X(01)00748-0

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Irradiation effects in carbon nanostructures
journal, July 1999


Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Encapsulated graphene field-effect transistors for air stable operation
journal, March 2015

  • Alexandrou, Konstantinos; Petrone, Nicholas; Hone, James
  • Applied Physics Letters, Vol. 106, Issue 11
  • DOI: 10.1063/1.4915513

Total Ionizing Dose Effects on hBN Encapsulated Graphene Devices
journal, December 2014

  • Zhang, Cher Xuan; Wang, Bin; Duan, Guo Xing
  • IEEE Transactions on Nuclear Science, Vol. 61, Issue 6
  • DOI: 10.1109/TNS.2014.2367036

Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study
journal, September 2014


Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy
journal, January 2010


Ozone Formation in Air Exposed to Cobalt-60 Gamma Radiation
journal, December 1963


Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Modification of graphene properties due to electron-beam irradiation
journal, January 2009

  • Teweldebrhan, D.; Balandin, A. A.
  • Applied Physics Letters, Vol. 94, Issue 1
  • DOI: 10.1063/1.3062851

Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates
journal, August 2011

  • Suk, Ji Won; Kitt, Alexander; Magnuson, Carl W.
  • ACS Nano, Vol. 5, Issue 9
  • DOI: 10.1021/nn201207c

Radiation Effects in Carbon Nanoelectronics
journal, July 2012


Fine Structure Constant Defines Visual Transparency of Graphene
journal, June 2008


The space radiation environment for electronics
journal, January 1988

  • Stassinopoulos, E. G.; Raymond, J. P.
  • Proceedings of the IEEE, Vol. 76, Issue 11
  • DOI: 10.1109/5.90113

Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices
journal, January 2010

  • Subbarao, Samuel P.; Bahlke, Matthias E.; Kymissis, Ioannis
  • IEEE Transactions on Electron Devices, Vol. 57, Issue 1
  • DOI: 10.1109/TED.2009.2034804

Thermal enhancement of chemical doping in graphene: a Raman spectroscopy study
journal, August 2010


Works referencing / citing this record:

A comprehensive study on the effects of gamma radiation on the physical properties of a two-dimensional WS 2 monolayer semiconductor
journal, January 2020

  • Felix, Jorlandio Francisco; da Silva, Arlon Fernandes; da Silva, Sebastião Willam
  • Nanoscale Horizons, Vol. 5, Issue 2
  • DOI: 10.1039/c9nh00414a

Gamma-ray radiation effects in graphene-based transistors with h-BN nanometer film substrates
journal, November 2019

  • Cazalas, E.; Hogsed, M. R.; Vangala, S.
  • Applied Physics Letters, Vol. 115, Issue 22
  • DOI: 10.1063/1.5127895

Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation
journal, January 2019

  • Kim, Dohyun; Park, Nam Hun; Lee, Hyunju
  • Photonics Research, Vol. 7, Issue 7
  • DOI: 10.1364/prj.7.000742

Radiation tolerance of two-dimensional material-based devices for space applications
text, January 2019


Radiation tolerance of two-dimensional material-based devices for space applications
text, January 2019


Radiation tolerance of two-dimensional material-based devices for space applications
journal, March 2019


Radiation tolerance of two-dimensional material-based devices for space applications
text, January 2018