skip to main content


This content will become publicly available on June 6, 2017

Title: Cu deposited on CeOx-modified TiO2(110): Synergistic effects at the metal–oxide interface and the mechanism of the WGS reaction

Experimental techniques and DFT calculations have been combined to study and compare the effect of the metal–substrate interaction in Cu/TiO2(110) and Cu/CeOx/TiO2(110) catalysts for the water–gas shift (WGS) reaction. Experiments and theory show that CeOx nanoparticles affect the dispersion of copper on titania, and on the formed copper–ceria interface, there are synergistic effects which favor water dissociation and the WGS reaction. The minimum energy path for the WGS reaction on the new highly active catalytic system Cu/CeOx/TiO2(110) has been predicted by theoretical calculations. Main steps such as adsorption–dissociation of water and *OCOH carboxyl intermediate formation–deprotonation have been characterized. In this very particular system, water splitting is no longer the rate-limiting step because it can dissociate overcoming an energy barrier of only 0.92 kcal/mol. One important insight of the present work is to show that easy full hydration of the ceria particles strongly lowers the reaction barrier for the deprotonation of the *OCOH intermediate and facilitates the evolution of the WGS reaction. For the first time, a system has been found on which the WGS reaction is able to work with all the involved energy barriers below 12 kcal/mol. This remarkable behavior makes the metal/CeOx/TiO2 family a potential candidate for industrialmore » application as catalysts in the WGS reaction. In conclusion, the change in the metal–support interactions when going from Cu/TiO2 to Cu/CeOx/TiO2 illustrates the importance of optimizing the oxide phase when improving the performance of metal/oxide catalysts for the WGS.« less
 [1] ;  [1] ;  [2] ;  [3] ;  [1]
  1. Univ. de Sevilla, Sevilla (Spain)
  2. Univ. Central de Venezuela, Caracas (Venezuela)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2155-5435; R&D Project: CO027; KC0302010
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 6; Journal Issue: 7; Journal ID: ISSN 2155-5435
American Chemical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY carboxyl; ceria; copper; DFT; metallic clusters; titania; water gas shift reaction