DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

Abstract

To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this studymore » confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

Authors:
ORCiD logo; ; ; ; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Bioenergy Technologies Office (BETO); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Bioenergy Technologies Office (BETO)
OSTI Identifier:
1618645
Alternate Identifier(s):
OSTI ID: 1325930
Report Number(s):
NREL/JA-5100-67146
Journal ID: ISSN 1754-6834; 189; PII: 606
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Name: Biotechnology for Biofuels Journal Volume: 9 Journal Issue: 1; Journal ID: ISSN 1754-6834
Publisher:
Springer Science + Business Media
Country of Publication:
Netherlands
Language:
English
Subject:
09 BIOMASS FUELS; Zymomonas mobilis; 2,3-Butanediol; metabolic engineering; omics; redox balance; advanced biofuel; fermentation; respiration chain

Citation Formats

Yang, Shihui, Mohagheghi, Ali, Franden, Mary Ann, Chou, Yat-Chen, Chen, Xiaowen, Dowe, Nancy, Himmel, Michael E., and Zhang, Min. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Netherlands: N. p., 2016. Web. doi:10.1186/s13068-016-0606-y.
Yang, Shihui, Mohagheghi, Ali, Franden, Mary Ann, Chou, Yat-Chen, Chen, Xiaowen, Dowe, Nancy, Himmel, Michael E., & Zhang, Min. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Netherlands. https://doi.org/10.1186/s13068-016-0606-y
Yang, Shihui, Mohagheghi, Ali, Franden, Mary Ann, Chou, Yat-Chen, Chen, Xiaowen, Dowe, Nancy, Himmel, Michael E., and Zhang, Min. Fri . "Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars". Netherlands. https://doi.org/10.1186/s13068-016-0606-y.
@article{osti_1618645,
title = {Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars},
author = {Yang, Shihui and Mohagheghi, Ali and Franden, Mary Ann and Chou, Yat-Chen and Chen, Xiaowen and Dowe, Nancy and Himmel, Michael E. and Zhang, Min},
abstractNote = {To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.},
doi = {10.1186/s13068-016-0606-y},
journal = {Biotechnology for Biofuels},
number = 1,
volume = 9,
place = {Netherlands},
year = {Fri Sep 02 00:00:00 EDT 2016},
month = {Fri Sep 02 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1186/s13068-016-0606-y

Citation Metrics:
Cited by: 98 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: The impact of meso‑2,3‑BDO and ethanol supplementation on growth of Z. mobilis in RMG medium at 30 °C using Bioscreen C. Relative growth rate (%) is the percentage of growth rate with chemical supplementation compared to control without

Save / Share:

Works referenced in this record:

Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors
journal, May 2015


Biotechnological production of 2,3-butanediol—Current state and prospects
journal, November 2009


Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
journal, May 2014


Improved genome annotation for Zymomonas mobilis
journal, October 2009

  • Yang, Shihui; Pappas, Katherine M.; Hauser, Loren J.
  • Nature Biotechnology, Vol. 27, Issue 10
  • DOI: 10.1038/nbt1009-893

Physiological Importance of Cytochrome <i>c</i> Peroxidase in Ethanologenic Thermotolerant <i>Zymomonas mobilis</i>
journal, January 2011

  • Charoensuk, Kannikar; Irie, Akira; Lertwattanasakul, Noppon
  • Journal of Molecular Microbiology and Biotechnology, Vol. 20, Issue 2
  • DOI: 10.1159/000324675

Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli
journal, March 2010

  • Nielsen, David R.; Yoon, Sang-Hwal; Yuan, Clara J.
  • Biotechnology Journal, Vol. 5, Issue 3
  • DOI: 10.1002/biot.200900279

Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions
journal, April 2011

  • Hayashi, Takeshi; Furuta, Yoshifumi; Furukawa, Kensuke
  • Journal of Bioscience and Bioengineering, Vol. 111, Issue 4
  • DOI: 10.1016/j.jbiosc.2010.12.009

Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
journal, January 2009

  • Yang, Shihui; Tschaplinski, Timothy J.; Engle, Nancy L.
  • BMC Genomics, Vol. 10, Issue 1
  • DOI: 10.1186/1471-2164-10-34

Microbial 2,3-butanediol production: A state-of-the-art review
journal, May 2011


Analysis of the Respiratory Chain in Ethanologenic <i>Zymomonas mobilis</i> with a Cyanide-Resistant <i>bd</i>-Type Ubiquinol Oxidase as the Only Terminal Oxidase and Its Possible Physiological Roles
journal, January 2008

  • Sootsuwan, Kaewta; Lertwattanasakul, Noppon; Thanonkeo, Pornthap
  • Journal of Molecular Microbiology and Biotechnology, Vol. 14, Issue 4
  • DOI: 10.1159/000112598

Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis
journal, November 2011


Zymomonas mobilis: a novel platform for future biorefineries
journal, January 2014


Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase
journal, June 2016

  • Bae, Sang-Jeong; Kim, Sujin; Hahn, Ji-Sook
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27667

Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates
journal, January 2013

  • Franden, Mary Ann; Pilath, Heidi M.; Mohagheghi, Ali
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-99

Combinatorial optimization of cyanobacterial 2,3-butanediol production
journal, March 2014


The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process
journal, January 2012

  • Chen, Xiaowen; Shekiro, Joseph; Franden, Mary Ann
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-8

Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates
journal, January 2013

  • Skerker, Jeffrey M.; Leon, Dacia; Price, Morgan N.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.30

High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts
journal, August 2012


Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes
journal, September 1995


Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis
journal, January 2016


DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4
journal, October 2010

  • Kerr, Aidan L.; Jeon, Young Jae; Svenson, Charles J.
  • Applied Microbiology and Biotechnology, Vol. 89, Issue 3
  • DOI: 10.1007/s00253-010-2936-1

A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis.
journal, September 1995


Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
journal, January 2012

  • Ng, Chiam Yu; Jung, Moo-young; Lee, Jinwon
  • Microbial Cell Factories, Vol. 11, Issue 1
  • DOI: 10.1186/1475-2859-11-68

Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol
journal, November 2015


Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate
journal, March 2015

  • Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0233-z

Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses
journal, July 2013


Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants
journal, January 2012


Biological production of 2,3-butanediol
journal, January 2001


Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes.
journal, March 1993


Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241
journal, January 2016

  • Zhang, Liaoyuan; Guo, Zewang; Chen, Jiebo
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19257

Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis
journal, January 2015

  • Zhang, Kun; Shao, Huanhuan; Cao, Qinghua
  • Applied Microbiology and Biotechnology, Vol. 99, Issue 4
  • DOI: 10.1007/s00253-014-6342-y

Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
journal, May 2010

  • Yang, S.; Land, M. L.; Klingeman, D. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 23
  • DOI: 10.1073/pnas.0914506107

Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
journal, December 2014


Engineering Bacillus licheniformis for the production of meso-2,3-butanediol
journal, June 2016


Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system
journal, June 2016


Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
journal, October 2013


Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes
journal, July 1985


Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis
journal, January 1995


Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein
journal, April 2015

  • Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo
  • Applied Microbiology and Biotechnology, Vol. 99, Issue 12
  • DOI: 10.1007/s00253-015-6577-2

A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical
journal, January 2013


Production of 2,3-butanediol by newly isolated Enterobacter cloacae
journal, September 1999

  • Saha, B. C.; Bothast, R. J.
  • Applied Microbiology and Biotechnology, Vol. 52, Issue 3
  • DOI: 10.1007/s002530051526

Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production
journal, October 2015

  • Tong, Ying-Jia; Ji, Xiao-Jun; Shen, Meng-Qiu
  • Applied Microbiology and Biotechnology, Vol. 100, Issue 2
  • DOI: 10.1007/s00253-015-7013-3

Insights into acetate toxicity in Zymomonas mobilis8b using different substrates
journal, September 2014

  • Yang, Shihui; Franden, Mary Ann; Brown, Steven D.
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/s13068-014-0140-8

Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli
journal, July 2012


Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase
journal, June 2014


Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria
journal, May 2015


Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a‐ fdh )
journal, April 2013

  • Dong, Hong‐Wei; Fan, Li‐Qiang; Luo, Zichen
  • Biotechnology and Bioengineering, Vol. 110, Issue 9
  • DOI: 10.1002/bit.24897

Discovery of Ethanol-Responsive Small RNAs in Zymomonas mobilis
journal, May 2014

  • Cho, Seung Hee; Lei, Roy; Henninger, Trey D.
  • Applied and Environmental Microbiology, Vol. 80, Issue 14
  • DOI: 10.1128/AEM.00429-14

Stereochemical applications of the expression of the L-2,3-butanediol dehydrogenase gene in Escherichia coli
journal, February 2001


Cofermentation of Glucose, Xylose,and Arabinose by Genomic DNA-IntegratedXylose/Arabinose Fermenting Strainof <E1>Zymomonas mobilis</E1> AX101
journal, January 2002

  • Mohagheghi, Ali; Evans, Kent; Chou, Yat-Chen
  • Applied Biochemistry and Biotechnology, Vol. 98-100, Issue 1-9
  • DOI: 10.1385/ABAB:98-100:1-9:885

Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose
journal, January 2014

  • Mohagheghi, Ali; Linger, Jeff; Smith, Holly
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/1754-6834-7-19

Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
journal, September 2015


The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4
journal, December 2004

  • Seo, Jeong-Sun; Chong, Hyonyong; Park, Hyun Seok
  • Nature Biotechnology, Vol. 23, Issue 1
  • DOI: 10.1038/nbt1045

Phenotype MicroArray Profiling of Zymomonas mobilis ZM4
journal, December 2009

  • Bochner, Barry; Gomez, Vanessa; Ziman, Michael
  • Applied Biochemistry and Biotechnology, Vol. 161, Issue 1-8
  • DOI: 10.1007/s12010-009-8842-2

Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
journal, January 2014


Engineering BioBrick vectors from BioBrick parts
journal, January 2008

  • Shetty, Reshma P.; Endy, Drew; Knight, Thomas F.
  • Journal of Biological Engineering, Vol. 2, Article No. 5
  • DOI: 10.1186/1754-1611-2-5

Transcriptome profiling of Zymomonas mobilis under furfural stress
journal, May 2012

  • He, Ming-xiong; Wu, Bo; Shui, Zong-xia
  • Applied Microbiology and Biotechnology, Vol. 95, Issue 1
  • DOI: 10.1007/s00253-012-4155-4

Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli
journal, October 2015

  • de Oliveira, Rafael R.; Nicholson, Wayne L.
  • Applied Microbiology and Biotechnology, Vol. 100, Issue 2
  • DOI: 10.1007/s00253-015-7030-2

2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
journal, April 2014

  • Nan, Hong; Seo, Seung-Oh; Oh, Eun Joong
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 12
  • DOI: 10.1007/s00253-014-5683-x

Respiratory Chain Analysis of Zymomonas mobilis Mutants Producing High Levels of Ethanol
journal, June 2012

  • Hayashi, Takeshi; Kato, Tsuyoshi; Furukawa, Kensuke
  • Applied and Environmental Microbiology, Vol. 78, Issue 16
  • DOI: 10.1128/AEM.00733-12

Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis
journal, December 2009


The respiratory chain provides salt stress tolerance by maintaining a low NADH/NAD+ ratio in Zymomonas mobilis
journal, December 2015

  • Song, Wonjoon; Aikawa, Shizuho; Kato, Tsuyoshi
  • Microbiology, Vol. 161, Issue 12
  • DOI: 10.1099/mic.0.000195

Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies
journal, January 2014


Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis
journal, November 2010

  • Widiastuti, Hanifah; Kim, Jae Young; Selvarasu, Suresh
  • Biotechnology and Bioengineering, Vol. 108, Issue 3
  • DOI: 10.1002/bit.22965

NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis
journal, March 2008


Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
journal, May 2010

  • Li, Zheng-Jun; Jian, Jia; Wei, Xiao-Xing
  • Applied Microbiology and Biotechnology, Vol. 87, Issue 6
  • DOI: 10.1007/s00253-010-2676-2

Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM
journal, October 2008

  • Ma, Cuiqing; Wang, Ailong; Qin, Jiayang
  • Applied Microbiology and Biotechnology, Vol. 82, Issue 1
  • DOI: 10.1007/s00253-008-1732-7

Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineeredZymomonas mobilis strains
journal, March 1998

  • Mohagheghi, Ali; Evans, Kent; Finkelstein, Mark
  • Applied Biochemistry and Biotechnology, Vol. 70-72, Issue 1
  • DOI: 10.1007/BF02920145

Microbial production of diols as platform chemicals: Recent progresses
journal, December 2011


Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis
journal, October 2015

  • Xu, Guo-Chao; Bian, Ya-Qian; Han, Rui-Zhi
  • Applied Biochemistry and Biotechnology, Vol. 178, Issue 3
  • DOI: 10.1007/s12010-015-1897-3

Transcriptome profiling of Zymomonas mobilis under ethanol stress
journal, January 2012

  • He, Ming-xiong; Wu, Bo; Shui, Zong-xia
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-75

Synthesis of Pure meso-2,3-Butanediol from Crude Glycerol Using an Engineered Metabolic Pathway in Escherichia coli
journal, March 2012

  • Lee, Soojin; Kim, Borim; Park, Kyungmoon
  • Applied Biochemistry and Biotechnology, Vol. 166, Issue 7
  • DOI: 10.1007/s12010-012-9593-z

Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol : Accumulating Enantio-pure (R, R)-2,3-BD in
journal, March 2015

  • Ji, Xiao-Jun; Liu, Lu-Gang; Shen, Meng-Qiu
  • Biotechnology and Bioengineering, Vol. 112, Issue 5
  • DOI: 10.1002/bit.25512

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.