DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiscale metrologies for process optimization of carbon nanotube polymer composites

Abstract

Carbon nanotube (CNT) polymer nanocomposites are attractive multifunctional materials with a growing range of commercial applications. With the increasing demand for these materials, it is imperative to develop and validate methods for on-line quality control and process monitoring during production. In this work, a novel combination of characterization techniques is utilized, that facilitates the non-invasive assessment of CNT dispersion in epoxy produced by the scalable process of calendering. First, the structural parameters of these nanocomposites are evaluated across multiple length scales (10-10 m to 10-3 m) using scanning gallium-ion microscopy, transmission electron microscopy and small-angle neutron scattering. Then, a non-contact resonant microwave cavity perturbation (RCP) technique is employed to accurately measure the AC electrical conductivity of the nanocomposites. Quantitative correlations between the conductivity and structural parameters find the RCP measurements to be sensitive to CNT mass fraction, spatial organization and, therefore, the processing parameters. These results, and the non-contact nature and speed of RCP measurements identify this technique as being ideally suited for quality control of CNT nanocomposites in a nanomanufacturing environment. In conclusion, when validated by the multiscale characterization suite, RCP may be broadly applicable in the production of hybrid functional materials, such as graphene, gold nanorod, and carbonmore » black nanocomposites.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [1];  [5];  [5];  [5];  [4];  [5];  [5];  [5]
  1. National Institute of Standards and Technology, Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
  2. National Institute of Standards and Technology, Boulder, CO (United States)
  3. National Institute of Standards and Technology, Gaithersburg, MD (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of Delaware, Newark, DE (United States)
  5. National Institute of Standards and Technology, Gaithersburg, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1324186
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 108; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Natarajan, Bharath, Orloff, Nathan D., Ashkar, Rana, Doshi, Sagar, Twedt, Kevin, Krishnamurthy, Ajay, Davis, Chelsea, Forster, Aaron M., Thostenson, Erik, Obrzut, Jan, Sharma, Renu, and Liddle, James Alexander. Multiscale metrologies for process optimization of carbon nanotube polymer composites. United States: N. p., 2016. Web. doi:10.1016/j.carbon.2016.07.028.
Natarajan, Bharath, Orloff, Nathan D., Ashkar, Rana, Doshi, Sagar, Twedt, Kevin, Krishnamurthy, Ajay, Davis, Chelsea, Forster, Aaron M., Thostenson, Erik, Obrzut, Jan, Sharma, Renu, & Liddle, James Alexander. Multiscale metrologies for process optimization of carbon nanotube polymer composites. United States. https://doi.org/10.1016/j.carbon.2016.07.028
Natarajan, Bharath, Orloff, Nathan D., Ashkar, Rana, Doshi, Sagar, Twedt, Kevin, Krishnamurthy, Ajay, Davis, Chelsea, Forster, Aaron M., Thostenson, Erik, Obrzut, Jan, Sharma, Renu, and Liddle, James Alexander. Mon . "Multiscale metrologies for process optimization of carbon nanotube polymer composites". United States. https://doi.org/10.1016/j.carbon.2016.07.028. https://www.osti.gov/servlets/purl/1324186.
@article{osti_1324186,
title = {Multiscale metrologies for process optimization of carbon nanotube polymer composites},
author = {Natarajan, Bharath and Orloff, Nathan D. and Ashkar, Rana and Doshi, Sagar and Twedt, Kevin and Krishnamurthy, Ajay and Davis, Chelsea and Forster, Aaron M. and Thostenson, Erik and Obrzut, Jan and Sharma, Renu and Liddle, James Alexander},
abstractNote = {Carbon nanotube (CNT) polymer nanocomposites are attractive multifunctional materials with a growing range of commercial applications. With the increasing demand for these materials, it is imperative to develop and validate methods for on-line quality control and process monitoring during production. In this work, a novel combination of characterization techniques is utilized, that facilitates the non-invasive assessment of CNT dispersion in epoxy produced by the scalable process of calendering. First, the structural parameters of these nanocomposites are evaluated across multiple length scales (10-10 m to 10-3 m) using scanning gallium-ion microscopy, transmission electron microscopy and small-angle neutron scattering. Then, a non-contact resonant microwave cavity perturbation (RCP) technique is employed to accurately measure the AC electrical conductivity of the nanocomposites. Quantitative correlations between the conductivity and structural parameters find the RCP measurements to be sensitive to CNT mass fraction, spatial organization and, therefore, the processing parameters. These results, and the non-contact nature and speed of RCP measurements identify this technique as being ideally suited for quality control of CNT nanocomposites in a nanomanufacturing environment. In conclusion, when validated by the multiscale characterization suite, RCP may be broadly applicable in the production of hybrid functional materials, such as graphene, gold nanorod, and carbon black nanocomposites.},
doi = {10.1016/j.carbon.2016.07.028},
journal = {Carbon},
number = C,
volume = 108,
place = {United States},
year = {Mon Jul 18 00:00:00 EDT 2016},
month = {Mon Jul 18 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Helical microtubules of graphitic carbon
journal, November 1991


Carbon Nanotubes: Present and Future Commercial Applications
journal, January 2013

  • De Volder, Michael F. L.; Tawfick, Sameh H.; Baughman, Ray H.
  • Science, Vol. 339, Issue 6119
  • DOI: 10.1126/science.1222453

Large-scale synthesis of carbon nanotubes
journal, July 1992

  • Ebbesen, T. W.; Ajayan, P. M.
  • Nature, Vol. 358, Issue 6383
  • DOI: 10.1038/358220a0

Large-scale production of single-walled carbon nanotubes by the electric-arc technique
journal, August 1997

  • Journet, C.; Maser, W. K.; Bernier, P.
  • Nature, Vol. 388, Issue 6644, p. 756-758
  • DOI: 10.1038/41972

Large-scale purification of single-wall carbon nanotubes: process, product, and characterization
journal, July 1998

  • Rinzler, A. G.; Liu, J.; Dai, H.
  • Applied Physics A: Materials Science & Processing, Vol. 67, Issue 1, p. 29-37
  • DOI: 10.1007/s003390050734

Large-scale production of carbon nanotubes and their applications
journal, January 2006

  • Endo, Morinobu; Hayashi, Takuya; Kim, Yoong-Ahm
  • Pure and Applied Chemistry, Vol. 78, Issue 9
  • DOI: 10.1351/pac200678091703

Polymer Nanocomposites Containing Carbon Nanotubes
journal, August 2006

  • Moniruzzaman, Mohammad; Winey, Karen I.
  • Macromolecules, Vol. 39, Issue 16
  • DOI: 10.1021/ma060733p

Recent Advances in Research on Carbon Nanotube-Polymer Composites
journal, April 2010


Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin--Nanotube Composite
journal, August 1994


Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites
journal, August 2006


Advances in the science and technology of carbon nanotubes and their composites: a review
journal, October 2001

  • Thostenson, Erik T.; Ren, Zhifeng; Chou, Tsu-Wei
  • Composites Science and Technology, Vol. 61, Issue 13, p. 1899-1912
  • DOI: 10.1016/S0266-3538(01)00094-X

Elucidation of the Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposites
journal, April 2011

  • Deng, Fei; Ito, Masaei; Noguchi, Toru
  • ACS Nano, Vol. 5, Issue 5
  • DOI: 10.1021/nn200201u

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites
journal, June 2006


A carbon nanotube strain sensor for structural health monitoring
journal, April 2006


Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites
journal, August 2014

  • Boland, Conor S.; Khan, Umar; Backes, Claudia
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn503454h

Nanoparticle networks reduce the flammability of polymer nanocomposites
journal, October 2005

  • Kashiwagi, Takashi; Du, Fangming; Douglas, Jack F.
  • Nature Materials, Vol. 4, Issue 12
  • DOI: 10.1038/nmat1502

Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
journal, September 2007

  • Li, J.; Ma, P. C.; Chow, W. S.
  • Advanced Functional Materials, Vol. 17, Issue 16
  • DOI: 10.1002/adfm.200700065

Nanotube composites
journal, June 2007

  • Ajayan, Pulickel M.; Tour, James M.
  • Nature, Vol. 447, Issue 7148
  • DOI: 10.1038/4471066a

Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube–Polymer Nanocomposites
journal, May 2013

  • Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn400726g

How Nano Are Nanocomposites?
journal, November 2007

  • Schaefer, Dale W.; Justice, Ryan S.
  • Macromolecules, Vol. 40, Issue 24
  • DOI: 10.1021/ma070356w

Confronting the complexity of CNT materials
journal, January 2015

  • Vargas-Lara, Fernando; Douglas, Jack F.
  • Soft Matter, Vol. 11, Issue 24
  • DOI: 10.1039/C5SM00912J

Fundamental aspects of nano-reinforced composites
journal, December 2006


Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication
journal, June 2012

  • Pagani, G.; Green, M. J.; Poulin, P.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 29
  • DOI: 10.1073/pnas.1200013109

Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties
journal, October 1999


Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization
journal, June 2003

  • Zhu, Jiang; Kim, JongDae; Peng, Haiqing
  • Nano Letters, Vol. 3, Issue 8
  • DOI: 10.1021/nl0342489

Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding
journal, December 2003

  • Zhang, Wei De; Shen, Lu; Phang, In Yee
  • Macromolecules, Vol. 37, Issue 2
  • DOI: 10.1021/ma035594f

Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites
journal, May 2009


Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites
journal, November 2006


Hierarchical Structure of Carbon Nanotube Networks
journal, June 2008

  • Chatterjee, Tirtha; Jackson, Andrew; Krishnamoorti, Ramanan
  • Journal of the American Chemical Society, Vol. 130, Issue 22
  • DOI: 10.1021/ja801480h

Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites
journal, March 2006


Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites
journal, July 2007


Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites
journal, June 2005


Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics
journal, January 1999

  • Chen, Linfeng; Ong, C. K.; Tan, B. T. G.
  • IEEE Transactions on Instrumentation and Measurement, Vol. 48, Issue 6, p. 1031-1037
  • DOI: 10.1109/19.816109

Dielectric Characterization by Microwave Cavity Perturbation Corrected for Nonuniform Fields
journal, September 2014

  • Orloff, Nathan D.; Obrzut, Jan; Long, Christian J.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 62, Issue 9
  • DOI: 10.1109/TMTT.2014.2336775

Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing
journal, November 2015

  • Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17019

Reduction and analysis of SANS and USANS data using IGOR Pro
journal, November 2006


Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures
journal, January 2013


Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate
journal, May 2010


Tailoring the electrical properties of MWCNT/epoxy composites controlling processing conditions
journal, September 2012

  • Faiella, Gabriella; Antonucci, Vincenza; Buschhorn, Samuel T.
  • Composites Part A: Applied Science and Manufacturing, Vol. 43, Issue 9
  • DOI: 10.1016/j.compositesa.2012.04.002

A Multiscale Study of High Performance Double-Walled Nanotube−Polymer Fibers
journal, October 2010

  • Naraghi, Mohammad; Filleter, Tobin; Moravsky, Alexander
  • ACS Nano, Vol. 4, Issue 11
  • DOI: 10.1021/nn101404u

Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts
journal, February 2008


Shear rheology of carbon nanotube suspensions
journal, January 2010


Experimental observation on the flow-induced assembly of Carbon nanotube suspensions to form helical bands
journal, March 2007

  • Ma, Anson W. K.; Mackley, Malcolm R.; Rahatekar, Sameer S.
  • Rheologica Acta, Vol. 46, Issue 7
  • DOI: 10.1007/s00397-007-0183-x

Transmission electron microscopy based direct mathematical quantifiers for dispersion in nanocomposites
journal, July 2007

  • Basu, S. K.; Tewari, A.; Fasulo, P. D.
  • Applied Physics Letters, Vol. 91, Issue 5
  • DOI: 10.1063/1.2760182

Comparative Measures of Single-Wall Carbon Nanotube Dispersion
journal, November 2006

  • Fagan, J. A.; Landi, B. J.; Mandelbaum, I.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 47
  • DOI: 10.1021/jp0647434

Stalking the Materials Genome: A Data-Driven Approach to the Virtual Design of Nanostructured Polymers
journal, June 2013

  • Breneman, Curt M.; Brinson, L. Catherine; Schadler, Linda S.
  • Advanced Functional Materials, Vol. 23, Issue 46
  • DOI: 10.1002/adfm.201301744

Microscopic measurement of the degree of mixing for nanoparticles in polymer nanocomposites by TEM images
journal, January 2007

  • Kim, Dongsik; Lee, Jun S.; Barry, Carol M. F.
  • Microscopy Research and Technique, Vol. 70, Issue 6
  • DOI: 10.1002/jemt.20478

A quantitative method for measuring nanocomposite dispersion
journal, February 2010


3D reconstruction of histological sections: Application to mammary gland tissue
journal, March 2010

  • Arganda-Carreras, Ignacio; Fernández-González, Rodrigo; Muñoz-Barrutia, Arrate
  • Microscopy Research and Technique, Vol. 73, Issue 11
  • DOI: 10.1002/jemt.20829

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Structure of Semidilute Single-Wall Carbon Nanotube Suspensions and Gels
journal, February 2006

  • Hough, L. A.; Islam, M. F.; Hammouda, B.
  • Nano Letters, Vol. 6, Issue 2
  • DOI: 10.1021/nl051871f

Effect of Grafting on Rheology and Structure of a Simplified Industrial Nanocomposite Silica/SBR
journal, August 2013

  • Baeza, Guilhem P.; Genix, Anne-Caroline; Degrandcourt, Christophe
  • Macromolecules, Vol. 46, Issue 16
  • DOI: 10.1021/ma401016d

Microstructural regimes of colloidal rod suspensions, gels, and glasses
journal, January 2010

  • Solomon, Michael J.; Spicer, Patrick T.
  • Soft Matter, Vol. 6, Issue 7
  • DOI: 10.1039/b918281k

A review and analysis of electrical percolation in carbon nanotube polymer composites
journal, August 2009


Nanotube Networks in Polymer Nanocomposites:  Rheology and Electrical Conductivity
journal, November 2004

  • Du, Fangming; Scogna, Robert C.; Zhou, Wei
  • Macromolecules, Vol. 37, Issue 24
  • DOI: 10.1021/ma049164g

Surface Functionalized Silver Nanoparticles for Ultrahigh Conductive Polymer Composites
journal, June 2006

  • Jiang, Hongjin; Moon, Kyoung-sik; Li, Yi
  • Chemistry of Materials, Vol. 18, Issue 13
  • DOI: 10.1021/cm0527773

Graphene-based composite materials
journal, July 2006

  • Stankovich, Sasha; Dikin, Dmitriy A.; Dommett, Geoffrey H. B.
  • Nature, Vol. 442, Issue 7100, p. 282-286
  • DOI: 10.1038/nature04969

Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites
journal, February 2008


Low Electrical Percolation Threshold of Silver and Copper Nanowires in Polystyrene Composites
journal, December 2006

  • Gelves, G. A.; Lin, B.; Sundararaj, U.
  • Advanced Functional Materials, Vol. 16, Issue 18
  • DOI: 10.1002/adfm.200600336

Obtaining ultimate functionalities in nanocomposites: Design, control, and fabrication
journal, September 2015


Works referencing / citing this record:

Recent Studies on the Multiscale Analysis of Polymer Nanocomposites
journal, July 2019


Tunneling-percolation model of multicomponent nanocomposites
journal, February 2018

  • Kale, Sohan; Karimi, Pouyan; Sabet, Fereshteh A.
  • Journal of Applied Physics, Vol. 123, Issue 8
  • DOI: 10.1063/1.5019945

Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites
journal, January 2019

  • Natarajan, Bharath; Stein, Itai Y.; Lachman, Noa
  • Nanoscale, Vol. 11, Issue 35
  • DOI: 10.1039/c9nr03317c