skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on August 18, 2017

Title: Towards direct synthesis of alane: A predicted defect-mediated pathway confirmed experimentally

Here, alane (AlH3) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2, indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 104 bar expected from bulk thermodynamics.
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [5] ;  [6] ;  [1] ;  [7]
  1. Ames Lab., Ames, IA (United States)
  2. Ames Lab., Ames, IA (United States); Univ. of Illinois Urbana-Champaign, Urbana, IL (United States)
  3. Univ. of Illinois Urbana-Champaign, Urbana, IL (United States); Ames Lab. and Iowa State Univ., Ames, IA (United States)
  4. Univ. of Illinois Urbana-Champaign, Urbana, IL (United States); Univ. of Pittsburgh, Pittsburgh, PA (United States)
  5. Univ. of Illinois Urbana-Champaign, Urbana, IL (United States)
  6. Univ. of Illinois Urbana-Champaign, Urbana, IL (United States); Univ. of Wisconsin, Madison, WI (United States)
  7. Ames Lab. and Iowa State Univ., Ames, IA (United States)
Publication Date:
OSTI Identifier:
1321966
Report Number(s):
IS-J--025
Journal ID: ISSN 1864-5631
Grant/Contract Number:
AC02-07CH11358
Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 9; Journal Issue: 17; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY