skip to main content

DOE PAGESDOE PAGES

Title: Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.
Authors:
 [1] ;  [2] ;  [3] ;  [1] ;  [1] ;  [2] ;  [3] ;  [2] ;  [1]
  1. Univ. of Texas at Dallas, Richardson, TX (United States)
  2. Univ. of Illinois at Chicago, Chicago, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
OSTI Identifier:
1307567
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE