skip to main content

DOE PAGESDOE PAGES

Title: Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to higher resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clearmore » drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less
Authors:
 [1] ;  [1] ;  [1]
  1. National Center for Atmospheric Research, Boulder, CO (United States)
Publication Date:
OSTI Identifier:
1306153
Grant/Contract Number:
FC02-97ER62402
Type:
Accepted Manuscript
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Volume: 8; Journal Issue: 2; Journal ID: ISSN 1942-2466
Publisher:
American Geophysical Union (AGU)
Research Org:
Univ. Corporation for Atmospheric Research, Boulder, CO (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES