DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermoelectric properties of semiconductor nanowire networks

Abstract

To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.

Authors:
 [1];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fordham Univ., Bronx, NY (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1304836
Alternate Identifier(s):
OSTI ID: 1421091
Report Number(s):
LA-UR-16-22271
Journal ID: ISSN 0021-8979; JAPIAU
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 12; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; material science; semiconductor nano-wires; nanowire networks; thermoelectric materials; phonons; thermal conductivity; resistors

Citation Formats

Roslyak, Oleksiy, and Piryatinski, Andrei. Thermoelectric properties of semiconductor nanowire networks. United States: N. p., 2016. Web. doi:10.1063/1.4944715.
Roslyak, Oleksiy, & Piryatinski, Andrei. Thermoelectric properties of semiconductor nanowire networks. United States. https://doi.org/10.1063/1.4944715
Roslyak, Oleksiy, and Piryatinski, Andrei. Mon . "Thermoelectric properties of semiconductor nanowire networks". United States. https://doi.org/10.1063/1.4944715. https://www.osti.gov/servlets/purl/1304836.
@article{osti_1304836,
title = {Thermoelectric properties of semiconductor nanowire networks},
author = {Roslyak, Oleksiy and Piryatinski, Andrei},
abstractNote = {To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.},
doi = {10.1063/1.4944715},
journal = {Journal of Applied Physics},
number = 12,
volume = 119,
place = {United States},
year = {Mon Mar 28 00:00:00 EDT 2016},
month = {Mon Mar 28 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Thermoelectric devices using semiconductor quantum wells
journal, August 1994

  • Mahan, G. D.; Lyon, H. B.
  • Journal of Applied Physics, Vol. 76, Issue 3
  • DOI: 10.1063/1.357715

Thermoelectric properties of nanostructured Si1−xGex and potential for further improvement
journal, December 2010

  • Bera, Chandan; Soulier, M.; Navone, C.
  • Journal of Applied Physics, Vol. 108, Issue 12
  • DOI: 10.1063/1.3518579

Nanowires in Thermoelectric Devices
journal, December 2011

  • Davami, Keivan; Lee, Jeong-Soo; Meyyappan, M.
  • Transactions on Electrical and Electronic Materials, Vol. 12, Issue 6
  • DOI: 10.4313/TEEM.2011.12.6.227

Thermoelectricity in semiconductor nanowires: Thermoelectricity in semiconductor nanowires
journal, October 2013

  • Kim, Jungwon; Bahk, Je-Hyeong; Hwang, Junphil
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 7, Issue 10
  • DOI: 10.1002/pssr.201307239

Semiconductor nanowires for thermoelectrics
journal, January 2012

  • Li, Zhen; Sun, Qiao; Yao, Xiang Dong
  • Journal of Materials Chemistry, Vol. 22, Issue 43
  • DOI: 10.1039/c2jm33899h

Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Surface Disordered Ge–Si Core–Shell Nanowires as Efficient Thermoelectric Materials
journal, January 2012


Thermoelectric properties of superlattice nanowires
journal, August 2003


High-temperature thermoelectric performance of heavily doped PbSe
journal, July 2010


Thermoelectric Characterization of Bismuth Telluride Nanowires, Synthesized Via Catalytic Growth and Post-Annealing
journal, November 2012

  • Hamdou, Bacel; Kimling, Johannes; Dorn, August
  • Advanced Materials, Vol. 25, Issue 2
  • DOI: 10.1002/adma.201202474

Thermoelectric performance of classical topological insulator nanowires
journal, December 2014

  • Gooth, Johannes; Gluschke, Jan Göran; Zierold, Robert
  • Semiconductor Science and Technology, Vol. 30, Issue 1
  • DOI: 10.1088/0268-1242/30/1/015015

Thermoelectric properties of individual electrodeposited bismuth telluride nanowires
journal, September 2005

  • Zhou, Jianhua; Jin, Chuangui; Seol, Jae Hun
  • Applied Physics Letters, Vol. 87, Issue 13
  • DOI: 10.1063/1.2058217

Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires
journal, May 2009

  • Mavrokefalos, Anastassios; Moore, Arden L.; Pettes, Michael T.
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3133145

Thermoelectric figure of merit of a one-dimensional conductor
journal, June 1993


Electrodeposited Bismuth Telluride Nanowire Arrays with Uniform Growth Fronts
journal, August 2007

  • Trahey, Lynn; Becker, Catherine R.; Stacy, Angelica M.
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl070711w

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties
journal, November 2011

  • Zhang, Genqiang; Kirk, Benjamin; Jauregui, Luis A.
  • Nano Letters, Vol. 12, Issue 1, p. 56-60
  • DOI: 10.1021/nl202935k

Electrodeposition of Ordered Bi 2 Te 3 Nanowire Arrays
journal, July 2001

  • Prieto, Amy L.; Sander, Melissa S.; Martín-González, Marisol S.
  • Journal of the American Chemical Society, Vol. 123, Issue 29
  • DOI: 10.1021/ja015989j

Using galvanostatic electroforming of Bi 1– x Sb x nanowires to control composition, crystallinity, and orientation
journal, December 2014

  • Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.
  • Journal of Materials Research, Vol. 30, Issue 2
  • DOI: 10.1557/jmr.2014.354

Surface-Decorated Silicon Nanowires: A Route to High- Z T Thermoelectrics
journal, July 2009


Broadband Electrical Characterization of Multiwalled Carbon Nanotubes and Contacts
journal, April 2007

  • Rice, Paul; Wallis, T. Mitch; Russek, Stephen E.
  • Nano Letters, Vol. 7, Issue 4
  • DOI: 10.1021/nl062725s

Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation
journal, February 2006


Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime
journal, October 2015


Many-Particle Physics
book, January 2000


Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires
journal, August 2000

  • Lin, Yu-Ming; Sun, Xiangzhong; Dresselhaus1,2, M. S.
  • Physical Review B, Vol. 62, Issue 7
  • DOI: 10.1103/PhysRevB.62.4610

Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation
journal, September 2008


Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance
journal, September 2010

  • Goyal, V.; Teweldebrhan, D.; Balandin, A. A.
  • Applied Physics Letters, Vol. 97, Issue 13
  • DOI: 10.1063/1.3494529

Thermoelectric properties of electrically gated bismuth telluride nanowires
journal, February 2010


Introduction to Thermoelectricity
book, January 2010


Thermal properties of high quality single crystals of bismuth telluride—Part I: Experimental characterization
journal, January 1988

  • Fleurial, J. P.; Gailliard, L.; Triboulet, R.
  • Journal of Physics and Chemistry of Solids, Vol. 49, Issue 10
  • DOI: 10.1016/0022-3697(88)90182-5

Phonon heat conduction in a semiconductor nanowire
journal, March 2001

  • Zou, Jie; Balandin, Alexander
  • Journal of Applied Physics, Vol. 89, Issue 5
  • DOI: 10.1063/1.1345515

Thermoelectric three-terminal hopping transport through one-dimensional nanosystems
journal, February 2012


Society and Nature: Toward a Green Social Theory
journal, October 1993

  • Alaimo, S.
  • Interdisciplinary Studies in Literature and Environment, Vol. 1, Issue 2
  • DOI: 10.1093/isle/1.2.138