skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on June 23, 2017

Title: Effect of local stress fields on twin characteristics in HCP metals

Here we study the effect of nearest neighboring grains on the propensity for {1012} twin growth in Mg and Zr. Twin lamellae lying within one grain flanked by two neighboring grains with several orientations are considered. The fields of resolved shear stress on the twin system are calculated in the multicrystal using a three-dimensional full-field crystal plasticity Fast Fourier Transform approach. The calculations were carried out for Mg and Zr using slip threshold stresses corresponding to 300K and 76K, respectively, where twin activity is important. We show that the neighboring grain constraint tends to oppose further growth and that the critical applied stress needed to overcome this resistance depends on neighboring grain orientation, more strongly in Zr than in Mg. We also present results for a pair of adjacent and parallel twins at various spacings. It is found that their paired interaction increases the resistive forces for twin growth above that for an isolated twin. The critical spacing above which this enhanced resistance is removed is smaller for Zr than Mg. Our analysis reveals that these two disparate responses of Zr and Mg are both a consequence of the fact that Zr is elastically and plastically more anisotropic than Mg.more » Additional calculations carried out on Ti support this conclusion. Finally, these findings can help explain why, for the same grain size, more twins per grain form in Zr than in Mg, twins in Zr tend to be thinner than those in Mg, and the relationship between the thickness of the twin and its Schmid factor in Zr is not as strong as in Mg.« less
Authors:
 [1] ;  [2] ;  [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Divisio
Publication Date:
OSTI Identifier:
1304731
Report Number(s):
LA-UR--16-24148
Journal ID: ISSN 1359-6454
Grant/Contract Number:
AC52-06NA25396; FWP-06SCPE401
Type:
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 116; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE Plasticity; Magnesium; Zirconium; Titanium; Anisotropy