DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate

Abstract

Copper hexacyanoferrate, CuII[FeIII(CN)6]2/3 nH2O, was synthesized, and varied amounts of K+ ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as CuII[FeIII(CN)6]2/3∙ nH2O + 2x/3K+ + 2x/3e⁻ ↔K2x/3CuII[FeIIxFeIII1- x(CN)6]2/3 nH2O. Infrared, Raman, and Mössbauer spectroscopy studies show that FeIII is continuously reduced to FeII with increasing x, accompanied by a decrease of the a-axis of the cubic F$$m\bar{3}$$m unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction, ~20% of the FeIII, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of ~26 wt % upon heating to 180 °C, above which the structure starts to decompose. The crystal structures of CuII[FeIII(CN)6]2/3∙ nH2O and K2/3Cu[Fe(CN)6]2/3∙ nH2O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)6 groups are vacant, and the octahedron around CuII is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the Cu N C Fe framework. In conclusion, the K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K+ ions.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [2];  [3];  [4];  [1]
  1. Stockholm Univ. (Sweden). Dept. of Materials and Environmental Chemistry
  2. Uppsala Univ. (Sweden). Dept. of Chemistry, Angstrom Lab.
  3. Julich Research Centre (Germany). Julich Centre for Neutron Science (JCNS). Peter Grunberg Inst. (PGI), Forschungszentrum Juelich GmbH
  4. Julich Research Centre (Germany). Julich Centre for Neutron Science (JCNS). Peter Grunberg Inst. (PGI), Forschungszentrum Juelich GmbH; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Swedish Research Council VR
OSTI Identifier:
1302943
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 55; Journal Issue: 12; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ojwang, Dickson O., Grins, Jekabs, Wardecki, Dariusz, Valvo, Mario, Renman, Viktor, Häggström, Lennart, Ericsson, Tore, Gustafsson, Torbjörn, Mahmoud, Abdelfattah, Hermann, Raphaël P., and Svensson, Gunnar. Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate. United States: N. p., 2016. Web. doi:10.1021/acs.inorgchem.6b00227.
Ojwang, Dickson O., Grins, Jekabs, Wardecki, Dariusz, Valvo, Mario, Renman, Viktor, Häggström, Lennart, Ericsson, Tore, Gustafsson, Torbjörn, Mahmoud, Abdelfattah, Hermann, Raphaël P., & Svensson, Gunnar. Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate. United States. https://doi.org/10.1021/acs.inorgchem.6b00227
Ojwang, Dickson O., Grins, Jekabs, Wardecki, Dariusz, Valvo, Mario, Renman, Viktor, Häggström, Lennart, Ericsson, Tore, Gustafsson, Torbjörn, Mahmoud, Abdelfattah, Hermann, Raphaël P., and Svensson, Gunnar. Fri . "Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate". United States. https://doi.org/10.1021/acs.inorgchem.6b00227. https://www.osti.gov/servlets/purl/1302943.
@article{osti_1302943,
title = {Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate},
author = {Ojwang, Dickson O. and Grins, Jekabs and Wardecki, Dariusz and Valvo, Mario and Renman, Viktor and Häggström, Lennart and Ericsson, Tore and Gustafsson, Torbjörn and Mahmoud, Abdelfattah and Hermann, Raphaël P. and Svensson, Gunnar},
abstractNote = {Copper hexacyanoferrate, CuII[FeIII(CN)6]2/3 nH2O, was synthesized, and varied amounts of K+ ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as CuII[FeIII(CN)6]2/3∙ nH2O + 2x/3K+ + 2x/3e⁻ ↔K2x/3CuII[FeIIxFeIII1- x(CN)6]2/3 nH2O. Infrared, Raman, and Mössbauer spectroscopy studies show that FeIII is continuously reduced to FeII with increasing x, accompanied by a decrease of the a-axis of the cubic F$m\bar{3}$m unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction, ~20% of the FeIII, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of ~26 wt % upon heating to 180 °C, above which the structure starts to decompose. The crystal structures of CuII[FeIII(CN)6]2/3∙ nH2O and K2/3Cu[Fe(CN)6]2/3∙ nH2O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)6 groups are vacant, and the octahedron around CuII is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the Cu N C Fe framework. In conclusion, the K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K+ ions.},
doi = {10.1021/acs.inorgchem.6b00227},
journal = {Inorganic Chemistry},
number = 12,
volume = 55,
place = {United States},
year = {Fri Jun 03 00:00:00 EDT 2016},
month = {Fri Jun 03 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 87 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011

  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

Battery Technologies for Large-Scale Stationary Energy Storage
journal, July 2011


Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries
journal, December 2011

  • Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.
  • Nano Letters, Vol. 11, Issue 12, p. 5421-5425
  • DOI: 10.1021/nl203193q

The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes
journal, January 2012

  • Wessells, Colin D.; Peddada, Sandeep V.; McDowell, Matthew T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. A98-A103
  • DOI: 10.1149/2.060202jes

Structural chemistry of Prussian blue analogs. Single-crystal study of manganese(II) hexacyanocobaltate(III), Mn3[Co(DcN)6]2.xH2O
journal, October 1970

  • Ludi, Andreas; Guedel, Hans U.; Ruegg, Max
  • Inorganic Chemistry, Vol. 9, Issue 10
  • DOI: 10.1021/ic50092a005

Mössbauer Spectra of In(III) and Ga(III)Hexacyanoferrate(III)
journal, January 1981


X-ray Diffraction Studies on Heavy-metal Iron-cyanides
journal, January 1942

  • Weiser, Harry B.; Milligan, W. O.; Bates, J. B.
  • The Journal of Physical Chemistry, Vol. 46, Issue 1
  • DOI: 10.1021/j150415a013

Structures and Formulæ of the Prussian Blues and Related Compounds
journal, April 1936

  • Keggin, J. F.; Miles, F. D.
  • Nature, Vol. 137, Issue 3466
  • DOI: 10.1038/137577a0

The structure of three cadmium hexacyanometallates(II): Cd2[Fe(CN)6]·8H2O, Cd2[Ru(CN)6]·8H2O and Cd2[Os(CN)6]·8H2O
journal, November 2001


Some Performance Characteristics of a Prussian Blue Battery
journal, January 1985

  • Neff, Vernon D.
  • Journal of The Electrochemical Society, Vol. 132, Issue 6, p. 1382-1384
  • DOI: 10.1149/1.2114121

Electrochromic Switching Mechanism of Iron Hexacyanoferrates Molecular Compounds: The Role of Fe 2+ (CN) 6 Vacancies
journal, May 2009

  • Bueno, Paulo Roberto; Giménez-Romero, David; Ferreira, Fabio Furlan
  • The Journal of Physical Chemistry C, Vol. 113, Issue 22
  • DOI: 10.1021/jp901146w

The role of vacancies in the hydrogen storage properties of Prussian blue analogues
journal, February 2007


Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis
journal, January 2007


Characterization of Prussian Blue analogue: nanocrystalline nickel-iron cyanide
journal, September 1997

  • Yamada, Shigeyuki; Kuwabara, Katsumi; Koumoto, Kunihito
  • Materials Science and Engineering: B, Vol. 49, Issue 2
  • DOI: 10.1016/S0921-5107(97)00118-9

Application of Electroactive Films in Corrosion Protection: II . Metal Hexacyanometalate Films on Surfaces
journal, July 1991

  • Deng, Zhi; Smyrl, William H.
  • Journal of The Electrochemical Society, Vol. 138, Issue 7
  • DOI: 10.1149/1.2085899

Copper hexacyanoferate(II) and (III) as trace cesium adsorbers from natural waters
journal, August 1987

  • Ganzerli Valentini, M. T.; Stella, R.; Maggi, L.
  • Journal of Radioanalytical and Nuclear Chemistry Articles, Vol. 114, Issue 1
  • DOI: 10.1007/BF02048881

Transparent, Superparamagnetic KCo[FeIII(CN)6]–Silica Nanocomposites with Tunable Photomagnetism
journal, June 2003

  • Moore, Joshua G.; Lochner, Eric J.; Ramsey, Chris
  • Angewandte Chemie International Edition, Vol. 42, Issue 24
  • DOI: 10.1002/anie.200250409

The Nature of Prussian Blue.
journal, August 1928

  • Davidson, David; Welo, L. A.
  • The Journal of Physical Chemistry, Vol. 32, Issue 8
  • DOI: 10.1021/j150290a007

The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O
journal, November 1977

  • Buser, H. J.; Schwarzenbach, D.; Petter, W.
  • Inorganic Chemistry, Vol. 16, Issue 11, p. 2704-2710
  • DOI: 10.1021/ic50177a008

Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O
journal, January 1972

  • Buser, H. J.; Ludi, A.; Petter, W.
  • Journal of the Chemical Society, Chemical Communications, Issue 23
  • DOI: 10.1039/c39720001299

Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order
journal, April 1980

  • Herren, F.; Fischer, P.; Ludi, A.
  • Inorganic Chemistry, Vol. 19, Issue 4
  • DOI: 10.1021/ic50206a032

Structure of Fe/Co/Ni Hexacyanoferrate As Probed by Multiple Edge X-ray Absorption Spectroscopy
journal, June 2008

  • Giorgetti, Marco; Berrettoni, Mario
  • Inorganic Chemistry, Vol. 47, Issue 13
  • DOI: 10.1021/ic800289c

Non-Prussian Blue Structures and Magnetic Ordering of Na 2 Mn II [Mn II (CN) 6 ] and Na 2 Mn II [Mn II (CN) 6 ]·2H 2 O
journal, January 2012

  • Kareis, Christopher M.; Lapidus, Saul H.; Her, Jae-Hyuk
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209799y

Structure and magnetic properties of Zn-Fe cyanide
journal, April 2001


An atypical coordination in hexacyanometallates: Structure and properties of hexagonal zinc phases
journal, September 2007

  • Rodríguez-Hernández, J.; Reguera, E.; Lima, E.
  • Journal of Physics and Chemistry of Solids, Vol. 68, Issue 9
  • DOI: 10.1016/j.jpcs.2007.03.054

Transformation of cadmium ferricyanide by heating, milling and sonication
journal, January 1998


Porous framework of T2[Fe(CN)6]·xH2O with T=Co, Ni, Cu, Zn, and H2 storage
journal, November 2008

  • Avila, M.; Reguera, L.; Rodríguez-Hernández, J.
  • Journal of Solid State Chemistry, Vol. 181, Issue 11
  • DOI: 10.1016/j.jssc.2008.07.030

Relationship between the Synthesis of Prussian Blue Pigments, Their Color, Physical Properties, and Their Behavior in Paint Layers
journal, May 2013

  • Samain, Louise; Grandjean, Fernande; Long, Gary J.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 19
  • DOI: 10.1021/jp3111327

Structural chemistry of polynuclear transition metal cyanides
book, January 2005


Synchrotron Structural Characterization of Electrochemically Synthesized Hexacyanoferrates Containing K + : A Revisited Analysis of Electrochemical Redox
journal, August 2008

  • Bueno, Paulo Roberto; Ferreira, Fabio Furlan; Giménez-Romero, David
  • The Journal of Physical Chemistry C, Vol. 112, Issue 34
  • DOI: 10.1021/jp802070f

Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes
journal, September 1982

  • Itaya, Kingo; Ataka, Tatsuaki; Toshima, Shinobu
  • Journal of the American Chemical Society, Vol. 104, Issue 18
  • DOI: 10.1021/ja00382a006

Observations on the composition of Prussian blue films and their electrochemistry
journal, March 1988

  • Lundgren, C. A.; Murray, Royce W.
  • Inorganic Chemistry, Vol. 27, Issue 5
  • DOI: 10.1021/ic00278a036

Identification of Processes Associated with Different Iron Sites in the Prussian Blue Structure by in Situ Electrochemical, Gravimetric, and Spectroscopic Techniques in the dc and ac Regimes
journal, January 2012

  • Agrisuelas, Jerónimo; García-Jareño, José J.; Vicente, Francisco
  • The Journal of Physical Chemistry C, Vol. 116, Issue 2
  • DOI: 10.1021/jp207269c

Thermally Induced Electron Transfer in a CsCoFe Prussian Blue Derivative: The Specific Role of the Alkali-Metal Ion
journal, July 2004

  • Bleuzen, Anne; Escax, Virginie; Ferrier, Alban
  • Angewandte Chemie International Edition, Vol. 43, Issue 28
  • DOI: 10.1002/anie.200460086

Die Struktur der Hydrate von Co 3 [Co(CN) 6 ] 2 und Cd 3 [Co(CN) 6 ] 2
journal, October 1968


Prussian blues
journal, November 1970

  • Wilde, Richard E.; Ghosh, Surendra Nath; Marshall, Billy J.
  • Inorganic Chemistry, Vol. 9, Issue 11
  • DOI: 10.1021/ic50093a027

Line profiles of neutron powder-diffraction peaks for structure refinement
journal, January 1967


Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions
journal, April 1996

  • Dostal, Aleš; Kauschka, Günther; Reddy, S. Jayarama
  • Journal of Electroanalytical Chemistry, Vol. 406, Issue 1-2
  • DOI: 10.1016/0022-0728(95)04427-2

Precise Electrochemical Control of Ferromagnetism in a Cyanide-Bridged Bimetallic Coordination Polymer
journal, September 2012

  • Mizuno, Yoshifumi; Okubo, Masashi; Kagesawa, Koichi
  • Inorganic Chemistry, Vol. 51, Issue 19
  • DOI: 10.1021/ic301361h

Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes
journal, January 2013

  • Mizuno, Yoshifumi; Okubo, Masashi; Hosono, Eiji
  • Journal of Materials Chemistry A, Vol. 1, Issue 42
  • DOI: 10.1039/c3ta13205f

Ion-Induced Transformation of Magnetism in a Bimetallic CuFe Prussian Blue Analogue
journal, May 2011

  • Okubo, Masashi; Asakura, Daisuke; Mizuno, Yoshifumi
  • Angewandte Chemie International Edition, Vol. 50, Issue 28
  • DOI: 10.1002/anie.201102048

Structure and magnetic properties of copper(II) hexacyanoferrate(III) compound
journal, April 2001


Tribochemical oxidation of KBr by transition metal ferricyanides
journal, June 1988

  • Bertrán, José Fernández; Pascual, José Blanco; Hernández, Miriam
  • Reactivity of Solids, Vol. 5, Issue 2-3
  • DOI: 10.1016/0168-7336(88)80079-2

Structure and Function of Ferricyanide in the Formation of Chromate Conversion Coatings on Aluminum Aircraft Alloy
journal, October 1999

  • Xia, Lin; McCreery, Richard L.
  • Journal of The Electrochemical Society, Vol. 146, Issue 10
  • DOI: 10.1149/1.1392536

The vibrational spectra of the cyanide ligand revisited: the ν(CN) infrared and Raman spectroscopy of Prussian blue and its analogues
journal, May 2011

  • Kettle, Sidney F. A.; Diana, Eliano; Marchese, Edoardo M. C.
  • Journal of Raman Spectroscopy, Vol. 42, Issue 11
  • DOI: 10.1002/jrs.2944

The Vibrational Spectra of the Cyanide Ligand Revisited: Double Bridging Cyanides
journal, July 2010

  • Kettle, Sidney F. A.; Diana, Eliano; Marchese, Edoardo M. C.
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 25
  • DOI: 10.1002/ejic.201000265

Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
journal, October 2014


Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries
journal, February 2015

  • Wang, Long; Song, Jie; Qiao, Ruimin
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja510347s

Redox reactions in Prussian blue containing paint layers as a result of light exposure
journal, January 2013

  • Samain, Louise; Gilbert, Bernard; Grandjean, Fernande
  • Journal of Analytical Atomic Spectrometry, Vol. 28, Issue 4
  • DOI: 10.1039/c3ja30359d

Changeover during in Situ Compositional Modulation of Hexacyanoferrate (Prussian Blue) Material
journal, December 2006

  • Bueno, Paulo Roberto; Giménez-Romero, David; Gabrielli, Claude
  • Journal of the American Chemical Society, Vol. 128, Issue 51
  • DOI: 10.1021/ja066982a

Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach
journal, January 2012

  • Giorgetti, Marco; Guadagnini, Lorella; Tonelli, Domenica
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 16
  • DOI: 10.1039/c2cp24109a

Thermal-Induced Changes in Molecular Magnets Based on Prussian Blue Analogues
journal, April 2006

  • Martínez-Garcia, R.; Knobel, M.; Reguera, E.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 14
  • DOI: 10.1021/jp0555551

Thermal Decomposition of Prussian Blue Analogues of the Type Fe[Fe(CN) 5 NO]
journal, August 2000

  • Inoue, Hidenari; Narino, Shuichi; Yoshioka, Naoki
  • Zeitschrift für Naturforschung B, Vol. 55, Issue 8
  • DOI: 10.1515/znb-2000-0803

Studies of different hydrated forms of Prussian Blue
journal, January 1983

  • Ganguli, Sanjukta; Bhattacharya, Manoranjan
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 79, Issue 7
  • DOI: 10.1039/f19837901513

Prussian Blue: Artists' Pigment and Chemists' Sponge
journal, May 2008


Single Crystal of a Prussian Blue Analog based on Rubidium Manganese Hexacyanoferrate
journal, July 2007

  • Tokoro, Hiroko; Shiro, Motoo; Hashimoto, Kazuhito
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 633, Issue 8
  • DOI: 10.1002/zaac.200700129

Works referencing / citing this record:

Ni Prussian Blue Analogue/Mesoporous Carbon Composite as Electrode Material for Aqueous K-Ion Energy Storage: Effect of Carbon-Framework Interaction on Its Electrochemical Behavior
journal, November 2018

  • Vázquez-Samperio, Juvencio; Sánchez-Padilla, N. M.; Acevedo-Peña, Próspero
  • ChemistrySelect, Vol. 3, Issue 41
  • DOI: 10.1002/slct.201801333

Hidden diversity of vacancy networks in Prussian blue analogues
journal, February 2020

  • Simonov, Arkadiy; De Baerdemaeker, Trees; Boström, Hanna L. B.
  • Nature, Vol. 578, Issue 7794
  • DOI: 10.1038/s41586-020-1980-y

Surfactant-stabilized nano-metal hexacyanoferrates with electrocatalytic and heterogeneous catalytic applications
journal, March 2018


Operando XAFS and XRD Study of a Prussian Blue Analogue Cathode Material: Iron Hexacyanocobaltate
journal, October 2018

  • Mullaliu, Angelo; Conti, Paolo; Aquilanti, Giuliana
  • Condensed Matter, Vol. 3, Issue 4
  • DOI: 10.3390/condmat3040036

Removing Cs within a continuous flow set-up by an ionic exchanger material transformable into a final waste form
journal, March 2019


Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Proton‐Regulated Kinetics and Superior Dendrite‐Free Property
journal, November 2019


Hidden diversity of vacancy networks in Prussian blue analogues
text, January 2020

  • Simonov, Arkadiy; De Baerdemaeker, Trees; Boström, Hanna L. B.
  • Springer
  • DOI: 10.5167/uzh-186848

A thermogravimetric study of thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis
journal, March 2017

  • Åkerblom, Ida E.; Ojwang, Dickson O.; Grins, Jekabs
  • Journal of Thermal Analysis and Calorimetry, Vol. 129, Issue 2
  • DOI: 10.1007/s10973-017-6280-x